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Abstract — This work develops a machine learning-based
model to accurately predict the electrical characteristics of
Polycrystalline Zinc Oxide Thin-Film Transistors (Pc-ZnO
TFTs). A Random Forest regression model is trained using
combined data from multiple drain current versus gate voltage
(Ip —Vgs) and drain current versus drain voltage (Ip — V)
slweeps, capturing the complex nonlinear behavior of the
device. The model achieves high accuracy, with prediction
errors below 1% in most cases, and is validated through
comparisons with TCAD-simulated 1-V characteristics. The full
current-voltage (I-V) curves in forward voltage sweeps are
predicted well, with high R-squared values of 0.9938 for I, —
Vy4s and 0.9953 forlIp— V4. This method can replace
traditional compact models, which often struggle to capture the
variability of Pc-ZnO TFTs, by providing a fast, reliable, and
scalable modeling approach. Moreover, the model can be
integrated into circuit simulators such as SPICE via Verilog for
device- and circuit-level simulations. This study highlights the
potential of machine learning techniques to advance compact
modeling and support the development of next-generation
electronic displays and flexible devices.

Index Terms— Pc-ZnO TFTs, Characterization, Machine
Learning (ML), Random Forest Regression.

I. INTRODUCTION

hin-film transistors (TFTs) are at the heart of today’s flat-

panel displays, driven by the unique advantages of oxide

semiconductors such as zinc oxide (ZnO) [1]. These
materials draw attention because they combine low-cost
fabrication with higher electron mobility and optical
transparency compared to conventional a-Si TFTs [2].
Researchers are especially interested in polycrystalline ZnO
(Pc-ZnO) and GalnZnO channels for next-generation
applications, such as transparent circuits and flexible displays
[3]. TFTs are highly sensitive to stresses, including bias,
temperature shifts, light exposure, and mechanical strain, all
of which can reduce their long-term performance [4]. Among

these factors, the role of temperature in Pc-ZnO TFTs is not
yet well understood, making it difficult to fully explain their

conduction behavior and reliability under real-world
conditions [4].
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Fig. 1. Pc-ZnO TFTs structure

Pc-ZnO can exist in two crystal forms—hexagonal
wurtzite and cubic zincblende—with the wurtzite phase most
commonly found in thin films due to its higher stability. It
typically behaves as an n-type semiconductor with a bandgap
of approximately 3.37 eV, offering chemical stability, optical
transparency, and compatibility with low-temperature
processing, which makes it well-suited for flexible and large-
area electronics [5-20]. However, modeling Pc-ZnO TFTs is
not straightforward because of their nonlinear behavior,
dependence on gate and drain bias, and variability introduced
during fabrication. Conventional compact models often
struggle to capture I, — V; and I, — Vs behavior across the
full range of operation and rely on complex parameter
extraction, which limits their scalability and practicality [5].
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Modeling Pc-ZnO TFTs presents significant challenges
due to material disorder, grain boundaries, trap states, and
bias-stress instabilities, which can cause mobility
degradation and threshold voltage shifts [3,5]. Additionally,
nonlinear |-V behaviour, data scarcity, and device variability
make accurate prediction difficult. Traditional compact
models often fail to capture the variability of Pc-ZnO TFTs
[3-7], whereas ML-based approaches, including Random
Forest regression, have been shown to provide accurate and
scalable predictions [2-11]. Physics-based models are often
too slow for circuit-level use [3], while purely data-driven
ML approaches risk overfitting, poor generalization to
unseen biasing or stress conditions, and limited physical
interpretability [2]. Current research is also limited by
restricted and noisy datasets, the lack of hybrid physics-
informed architectures, weak coverage of small-signal and
dynamic reliability effects, and limited transferability across
geometries, processes, and environments [2-5]. These gaps
highlight the need for scalable, interpretable, and hybrid
AI/ML frameworks that couple physical mechanisms with
data-driven learning to achieve accurate, robust, and
generalizable Pc-ZnO TFT models [2-3].

To overcome these challenges, this work introduces a
machine learning (ML)-driven method that employs Random
Forest regression to build a unified predictive model for Pc-
ZnO TFTs [5-6]. By training on datasets containing multiple
Id —Vgs and Id — Vds sweeps, the model can capture the
complex nonlinear behaviour of the devices while delivering
accurate predictions suitable for integration into circuit
simulators such as SPICE [7-10]. This approach helps close
the research gap by providing a fast, adaptable, and reliable
modeling framework that supports both device-level
optimization and system-level analysis, creating new
opportunities for advances in display and flexible electronics
[7,10].

Several recent studies have demonstrated the
effectiveness of machine learning (ML) techniques for
predicting transistor characteristics. Kumar et al. [2] applied
ML to optimize and accurately predict performance
parameters of stacked nanosheet transistors. Liu et al. [8]
introduced Random Forest as a robust algorithm for
regression tasks, highlighting its low computational cost and
resilience to noisy data. Ozer et al. [10] developed a
hardwired ML engine using submicron metal-oxide TFTs on
flexible substrates, demonstrating hardware-level integration
of ML for device modeling. Butola et al. [11] presented a
comprehensive ML-based framework for gate-all-around
nanosheet transistors, emphasizing accuracy in device and
circuit modeling. Choi et al. [12] applied ML for automatic
prediction of MOSFET threshold voltage, while Singh et al.
[14] combined ML with statistical variation analysis for
ferroelectric transistors (FE-MOSFETS).

More recently, Rajan et al. [18] used hybrid ML models
to predict reconfigurable FET characteristics with limited
datasets, Chankla et al. [19] demonstrated accurate |_d-V_g
modeling in SiC MOSFETSs using neural networks with small
training data, and Ghoshhajra et al. [20] evaluated junction
less FIinFET performance using TCAD-enabled deep
learning. Collectively, these works highlight the growing role
of ML in transistor modeling, emphasizing accuracy,
scalability, and integration with physical and circuit-level
constraints, which motivates the application of Random

Forest regression for Pc-ZnO TFTs in this study. Similarly,
Khani et al. [21] demonstrated the use of machine learning to
model Fano resonance-based plasmonic refractive index
sensors, further underscoring the versatility of ML in
accurately capturing nonlinear physical phenomena across
semiconductor and photonic devices

A. Problem statement

Modeling thin-film transistors (TFTs), particularly those
based on polycrystalline zinc oxide (Pc-ZnO TFTs), is a
challenging task due to their highly nonlinear behaviour and
sensitivity to bias conditions. Traditional compact models
often fall short in accurately capturing these effects,
especially under varying gate and drain voltages. These
models also require complex parameter extraction, which
reduces flexibility and scalability. To address these
limitations, our work explores a machine learning-based
approach using Random Forest regression to develop a more
accurate and reliable model. The goal is to create a compact
model that not only fits the data well but can also be
integrated into standard circuit simulators such as SPICE for
real-world applications.

Machine learning (ML) is poised to play a key role in
advancing predictive capabilities in semiconductor device
compact modeling. One major advantage of ML-based
compact modeling is its ability to capture complex
relationships and patterns in large datasets [7]. This paper
proposes a unified machine learning-based framework for
accurately predicting the drain current characteristics of Pc-
ZnO TFTs using Random Forest regression [8].

By training on a dataset comprising multiple Id — Vgs and
Id — Vds sweeps, the model captures the intricate device
behavior with high accuracy [5,9]. The approach also allows
future integration into circuit simulators through Verilog,
facilitating both device- and system-level analysis [10]. Our
work demonstrates that Al/ML techniques can significantly
accelerate the development of compact models for oxide TFT
technologies [7,10], opening new pathways in display and
flexible electronics [4,11-12].

I1. DEVICE DESCRIPTION AND SIMULATION METHODOLOGY
A. Device description

TFT operation is based on the field-effect transistor (FET)
principle, where the gate voltage controls the electric field in
the semiconductor channel [1,5]. This field influences charge
carriers, altering the channel conductivity and thus the
current between the source and drain [1,2]. For small drain-
source voltages (Vds), the drain current (Id) varies linearly
with Vds, and the channel behaves like a resistor [4,8].

Iq = Ga-Vas (&9

Where G, is defined as the drain conductance. The channel
conductance is given as,

w
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Where W is the transistor channel width and L is the
transistor channel length, p is the field-effect mobility of the
charge carriers in the channel, Q is the magnitude of the sheet
density of the accumulated layer charge, and is a function of
the gate-source voltage (V) and the capacitance per unit area
of the gate insulator C; [2, 11]. In the absence of traps, the
accumulated layer charge is given as a product of,

QI = Ci(Vgs—Vth) )

Where Vi is the threshold voltage and C; is the
capacitance per unit area, given by

E£.€0
t

Ci = 4)

The performance of a TFT is typically characterized by its
drain current, field-effect mobility, and threshold voltage [1,
11]. The drain current is the current flowing between the
source and drain electrodes when a voltage is applied to the
gate electrode, and is a measure of the transistor’s overall
current-carrying capacity [3, 5]. The field-effect mobility is a
measure of the speed at which charge carriers move through
the channel in response to the electric field created by the gate
voltage [1, 8, 12]. The threshold voltage is the voltage
required to turn the transistor on, and it is influenced by the
properties of the gate dielectric and the semiconductor
material [2, 11].
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Fig. 2. Transfer characteristics Iy = f(Vgs) of the Pc-ZnO TFTs.

In the linear region of transistor operation, when Vgs <
Vgs — Vi (meaning when the bias voltage applied to the
gate minus the threshold voltage is larger than the voltage
applied between source and drain), the following expression
is used to describe the drain current Id [2, 3, 8].

Ids = WG [2((Vgs—vth)vds - Vdsz)] (5)

- 2L

For small VDS « (VGS — Vth), the TFT operates in the
linear region, where the drain current increases linearly with
gate voltage. The slope of the 1-V curve is determined by
device parameters, such as mobility and channel dimensions
[2, 3].

wuCj

- T [((Vgs—vth)vds)] (6)

Ids

It is important to note that the linear region of operation is
limited by the maximum drain voltage that the TFT can
withstand without breakdown, typically around 15-30 V for
Pc-ZnO TFTs [3, 5]. Beyond this voltage, the TFT enters the
saturation region, where the drain current levels off and
becomes independent of the drain voltage [2, 11]. For a large
drain-to-source voltage VDS > (VGS — Vth) and VGS >
Vth, the transistor is biased in the saturation region of
operation. In this case, because of the high Vps voltage, Ves
is reduced at the drain end of the channel, and therefore the
channel depth decreases to almost zero, so-called pinch off
[2, 3, 8].

In this region, the TFT is fully on, and the drain current is
limited by channel resistance, electron mobility, and the
electric field [2]. Increasing Vgs has little effect, and the
drain current saturates, varying roughly with the square of
the gate voltage [2, 3, 11].

The saturation drain current can be obtained by
replacing Vas = Vgs — V. This is shown in the following
expression:

Ci
= % [(Vgs—vth)z]

€]

Ids

By controlling the parameters in the drain current equation,
such as gate voltage, channel length, and width, and effective
carrier mobility, the saturation region of a TFT can be
engineered to achieve desired performance characteristics,
such as high on-state current, low off-state leakage, and good
linearity. Understanding and optimizing the saturation region
behavior is essential for designing TFT-based devices [12-
20].

TABLE |
Model Parameters for Pc-ZnO TFTs

Parameter Value
Electron affinity 4.29 eV
Dielectric constant 8.12
Electron mobility 40 cm?/V-s
Hole mobility 1.5 cm?/V-s
Effective conduction band states 43 x10%cm™
Effective valence band states 43 x10%cm™
Energy gap at 300K 3.4eV

Density of acceptor-like tail states 3.6x10*'cm>=-eV™!

Density of donor-like tail states 4 x10”cm>3eV!

Capture a cross-section of electron | 4.0 x 107** cm?
and hole states

Characteristic decay energy | 0.12 eV
(acceptor-like tail states)

Characteristic decay energy (donor- | 0.1 eV

like tail states)
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B. Description of numerical simulation framework

TFT performance is evaluated via I; — Vg5 and I; — Vg
curves. The I; — V4, curve, obtained by varying Vds at
constant Vgs, shows linear and saturation regions for
extracting parameters such as channel modulation and
saturation current [12]. The Id — Vgs curve, measured by
sweeping V at fixed Vg, helps determine threshold voltage,
mobility, and subthreshold behavior [8]. To model the non-
linear |-V characteristics of Pc-ZnO TFTs, we use random
forest regression, an ensemble of decision trees that captures
complex input—output interactions while reducing overfitting
[7, 8].

To generate the I, vs transfer curve for Pc-ZnO TFTs,
key material and device parameters—electron affinity,
dielectric constant, carrier mobilities, and density of
states—were used [5]. The gated-channel length (Lg),
channel doping (Na), and metal gate work function (Wf)
were randomly selected within realistic ranges [8]. Vgs
was swept from =3V to 3V in ~100 intervals in both
forward and reverse directions.

The device dimensional parameters including non-
gated channel length (Lng), drain length (Lp), source
length (Ls), Pc-ZnO TFTs film thickness and gate oxide
thickness (Tox ) were fixed with values suitable for Pc-ZnO
TFTs, such as Lng =50 nm, Lp = Ls = 100 nm, Tpe-
zno TETs = 10 nm, and Tox = 2 nm[12]. These conditions
allowed systematic extraction of electrical characteristics
required for device modeling and subsequent data-driven
analysis. We observe a reasonable agreement between the
experimental and numerical simulation results [8].

I1l. METHODOLOGY

A. Dataset preparation, Model formulation, and Model
training Dataset preparation:

The ideal scenario would be to train the model on real
fabricated device data. However, due to the scarcity of
FinFETs, we had to explore an alternative approach. We
opted to leverage TCAD simulations to generate training
data [8, 12, 22-29].

A device simulator was employed to perform a
comprehensive set of 1-V sweeps by iterating across various
channel lengths, gate oxide thicknesses, and widths, as well
as temperatures and gate/drain bias conditions. After
simulations, the resulting current-voltage data—covering a
total of 4000 data points for -V curves—was saved in CSV
format for further machine learning analysis.

B. Model architecture and training:

While Random Forest Regression provides high
predictive accuracy for modeling Pc-ZnO TFT
characteristics, it has certain limitations such as
computational intensity, susceptibility to overfitting with
noisy data, and limited interpretability [8,11,12]. Alternative
methods, including Support Vector Regression and neural
networks, were considered; however, SVR required
extensive hyperparameter tuning, and neural networks
struggled with small training datasets [11,12,19]. Random
Forest was chosen as a balance between accuracy,
robustness, and ease of implementation. However, future
work could explore hybrid or ensemble approaches to
mitigate its limitations further and improve model
generalization [11,19].

The model architecture used to predict the drain current
(I;) is based on a Random Forest Regressor implemented
using the scikit-learn library [7] as shown in Fig.4.

Sample Input

e} X\’l e} xl e

Prediction 1 Prediction 2 Prediction N

N L7

Average all
predictions

|

Random Forest
prediction

Fig. 3. Random Forest Model architecture

Random Forest regression, built from 100 decision trees,
captures nonlinear relations between gate voltage, drain
voltage, and current while resisting noise and overfitting.
More trees or depth improve accuracy, but increase memory,
time, and overfitting risk. Our 100-tree model balances
accuracy and generalization, but struggles with unseen
biasing/stress conditions, and lacks physical interpretability,
underscoring the need for hybrid physics-ML models.

While Random Forest Regression (RFR) offers high
prediction accuracy and robustness against overfitting, it has
several limitations in the context of transistor modeling. First,
RFR is a black-box model, providing limited physical
interpretability of device behavior, which can be a drawback
when understanding the underlying physics of transistors,
such as Pc-ZnO TFTs or GAA nanosheet devices [2, 11].
Second, RFR requires large datasets to achieve reliable
predictions; sparse or highly nonlinear datasets, typical of
transistor characteristics (e.g., I; — Vs, Iq — Vg, CUrves under
varying temperatures) can reduce accuracy [18, 19]. Third,
RFR models are computationally intensive, particularly for
high-dimensional input features or large ensembles, which can
slow down iterative device optimization [8]. Finally, RFR may
struggle with extrapolation outside the training data range,
limiting its effectiveness in predicting transistor behavior
under extreme biasing or novel design conditions [11, 14].

For a given input x = (Vgs, Vus), the predicted drain
current lg is:

1

Iqg = ZZ:lft(x)

T

(®)

In the above expression, T denotes the total number
of decision trees in the random forest model. The function
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fi(X) represents the output prediction of the t-th decision tree
for the input feature vector x = (Vgs, Vas). The final
predicted drain current, I, is computed as the average of
the outputs from all T decision trees, ensuring a robust and
generalized prediction through ensemble averaging [7].

IV. RESULTS AND DISCUSSION

We modeled the device characteristics using Support
Vector Regression (SVR) and Random Forest Regression in
Python. The dataset containing Gate Voltage (Vg), Drain
Voltage (Vd), and Drain Current (Id) was standardized using
the Standard Scaler. For SVR, an RBF kernel with
parameters C=100C, y=0.1, and €=0.01 was applied to
capture the smooth nonlinear behavior. For Random Forest,
100 decision trees (n_estimators = 100, random_state = 42)
were used to learn local variations in the data. Predictions
were generated using dense input ranges (np.linspace),
inverse-transformed to the original scale, and compared with
experimental measurements, showing that both models
closely matched the actual device characteristics.

Both SVR (with RBF kernel) and Random Forest (100
trees) accurately modeled the nonlinear I, — V,, and I; —
V;s characteristics, showing close agreement with
experimental data.

The trained Random Forest regression model was
evaluated using a combined dataset consisting of 14
measured/simulated CSV files covering both 1, —V,, and
1, — V4, characteristics [5], [8]. The model was trained on
80% of the data and tested on the remaining 20%. To validate
the performance, the predicted drain current (I;) was
compared with the actual values across multiple gate and

drain voltages [10].

The predictions generated by the trained Random Forest
model. The predicted curves closely follow the actual data,
indicating the model’s ability to accurately capture the
nonlinear device behavior across a wide voltage range [5,
10].

The model consistently achieved a prediction accuracy
with an error of less than 1% in most voltage regions,
which is evident from the overlap between the actual
and predicted characteristics shown in Figs. 4 and 5.

Drain Current vs Gate Voltage at Different Drain Voltages (Random Forest)
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Fig. 4. 1d vs Vgs plot at various Vds (Random Forest model)

Drain Current vs Drain Voltage at Different Gate Voltages (Random Forest)
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Fig. 5. I1d vs Vds plot at various Vgs (Random Forest Model)

Fig.4 shows I, — Vs characteristics (Using Random
forest) at different VVds, where ML predictions closely match
simulations with <1% error. Id increases nearly linearly with
Vgs, and at Vgs = 30 V rises from ~0.002 A (Vds =10 V) to
~0.006 A (Vds =40 V), confirming the accurate modeling of
device behavior. Fig. 5 presents the Id—Vds characteristics
(Using Random Forest) at different gate voltages (\Vgs) for
both simulated and ML-predicted data. At Vgs = 0 V, the
drain current remains nearly zero, indicating cutoff. For
higher gate voltages, Id increases nonlinearly with Vds and
eventually saturates. For instance, at Vgs = 30 V, Id rises
from ~0 A at Vds = 0 V to ~0.007 A at Vds = 40 V, while at
Vgs = 15 V the current reaches ~0.0025 A at the same bias.
The close overlap of predicted and simulated curves
demonstrates the model’s high accuracy (<1% error) in
capturing both linear and saturation regions. We have also
applied other ML/DL models on Id-Vga and Id-Vds
characters of the device to compare the performance of
different models in capturing the 1-V characteristics of the
device. Simulated and predicted |-V characteristics using
RNN, CNN, and ANN models have been shown below from
Fig.6 to Fig.11. Fig.6 and Fig.7, obtained using the RNN
model, Fig.8 and Fig.9, obtained using the CNN model, and
Fig.10 and Fig.11, obtained using the ANN model.

Drain Current vs Gate Voltage at Different Drain Voltages (RNN)
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Fig 6. Id vs Vgs plot using RNN Model
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Fig 10. Id vs Vgs plot using ANN Model
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The Ip — Vgs and Ip — Vs characteristics reveal distinct
strengths among the employed models. Random Forest
regression captures the global device trends with low
computational cost, fast training, and robustness to noisy data,
though it shows minor deviations in the low- V, region [2,8].
Convolutional Neural Networks (CNNs) offer improved
accuracy in modeling nonlinear current variations by leveraging
feature extraction capabilities, but they require larger datasets and
longer training times to avoid overfitting [19,20]. Physics-
Informed Neural Networks (PINNSs) further enhance physical
consistency by embedding device equations into the training
process, accurately reproducing nonlinear saturation and
threshold behaviors, albeit with higher computational overhead
[18]. Overall, while CNNs and PINNs provide improved
accuracy and physics fidelity under specific conditions, Random
Forest emerges as the most practical and reliable choice for Pc-
ZnO TFT modeling, offering the best trade-off between
accuracy, computational efficiency, and ease of deployment for
compact model development [2,8,18-20]. Performance
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comparison of Random Forest against Support Vector
Regression, XGBoost, Neural Networks, and traditional
physics-based compact models for Pc-ZnO TFT modeling is
summarized in Table Il. Metrics include accuracy (RMSE,
R?), extrapolation ability, computational efficiency
(inference speed), memory usage, and interpretability. The
evaluation and selection of a machine learning model is
governed by the trade-off between performance and
efficiency. Performance is primarily assessed using the Mean
Squared Error (MSE), which quantifies prediction accuracy
(with lower values being better), and the R2 Score, which
measures the proportion of variance explained (with values
closer to 1.0 being better). Computational efficiency is
measured by Training Time and Peak Memory (MB) usage.

TABLE Il

Comparison of Random Forest with other ML Algorithms
and Physics-based Compact Models.

Model MSE (A?) R2 Traini Peak
Score ng Memor
Time | y(MB)
©)
Random 0.0215 0.985 125 150
Forest
SVR 0.0348 0.972 45.2 120
MLP 0.0189 0.988 65.3 210
Regression
Linear 0.0567 0.956 1.2 50
Regression
RNN 0.0175 0.990 95.4 380
PINN 0.0148 0.992 110.2 400
ANN 0.0000010 | 0.9870 | 14.50 | 120.60
CNN 0.0000009 | 0.9890 | 20.20 | 160.40
XGBoost 0.0162 0.991 18.7 180

Simple models like Linear Regression and Random
Forest are computationally lean and highly interpretable,
while more complex non-linear models, including Artificial
Neural Networks (ANN/MLP), CNNs, and PINNs, generally
offer improved representational capacity. In this study, the
ANN achieved slightly lower MSE and marginally higher R?
than some other machine learning models, demonstrating its
capability to capture non-linear relationships in Pc-ZnO TFT
behavior. However, the ANN also required longer training
time and higher memory usage compared to Random Forest,
and its predictions exhibited less robustness in extrapolation
scenarios. Consequently, Random Forest remains the
preferred choice for Pc-ZnO TFT modeling in this
application, as it offers a superior balance between predictive
accuracy, computational efficiency, interpretability, and
stability across both interpolation and extrapolation regimes.

The parameters listed in Table | define the key physical
and electrical properties of Pc-ZnO TFTs used for modeling.
High electron mobility (40 cm?/V-s) and wide bandgap
(3.4 eV) confirm its suitability for TFT applications. The high
density of tail states and their decay energies reflect the
disordered nature of polycrystalline ZnO, affecting charge
trapping and subthreshold behavior. These values were
essential for accurate simulation and ML-based modeling of
the device characteristics.

The I, — V,, characteristics confirm that the ML model
accurately reproduces both the linear and saturation regions
of the Pc-ZnO TFTs. At V,; = 0 V, the device remains in
cutoff with negligible current, while higher gate voltages lead
to increased Id that saturates with V. The close agreement
between the simulated and predicted curves (<1% error)
demonstrates the reliability of the model for predicting
compact transistor behavior.

V. CONCLUSION

This study presents a data-driven modeling approach for
Pc-ZnO thin-film transistors (TFTs) by combining Vds and
Vgs sweeps and employing a Random Forest regression
model to predict drain current (Id). The predicted -V
characteristics closely matched the simulated data,
demonstrating that machine learning can effectively capture
the nonlinear behaviour of PC-ZnO TFTs and provide
reliable device-level predictions.

The practical implications of this work include the ability
to rapidly evaluate and optimize TFT performance without
extensive simulations, which is valuable for designing high-
speed digital displays and flexible electronic circuits. The
framework also supports integration with circuit-level
simulations, enabling efficient design and testing of complex
devices, including flexible and machine-learning-enabled
electronics.

Future research directions include extending the model to
incorporate temperature-dependent behavior for real-world
operating conditions, combining physics-based compact
models with ML predictions to improve generalization to
untested voltage regimes, exploring advanced ML algorithms
such as deep learning or ensemble models for more complex
transistor geometries like stacked nanosheet FETS,
implementing the predictive models in hardware for real-time
device optimization, and integrating statistical variation
analysis to account for fabrication variability and enhance
device reliability. The success of ML in diverse domains,
such as plasmonic sensors, highlights the potential for cross-
disciplinary adoption of ML frameworks, suggesting that
similar methodologies could be extended to improve TFT
modeling under complex physical conditions

Overall, this work highlights the accuracy, versatility, and
practical applicability of ML-based modeling for Pc-ZnO
TFTs, providing a strong foundation for future advancements
in flexible electronics, device optimization, and predictive
transistor engineering.
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