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Abstract — This work develops a machine learning-based 

model to accurately predict the electrical characteristics of 

Polycrystalline Zinc Oxide Thin-Film Transistors (Pc-ZnO 

TFTs). A Random Forest regression model is trained using 

combined data from multiple drain current versus gate voltage 

(𝑰𝑫 − 𝑽𝒈𝒔) and drain current versus drain voltage (𝑰𝑫 − 𝑽𝒅𝒔) 

s1weeps, capturing the complex nonlinear behavior of the 

device. The model achieves high accuracy, with prediction 

errors below 1% in most cases, and is validated through 

comparisons with TCAD-simulated I–V characteristics. The full 

current–voltage (I–V) curves in forward voltage sweeps are 

predicted well, with high R-squared values of 0.9938 for 𝑰𝑫 −
𝑽𝒈𝒔 and 0.9953 for 𝑰𝑫 − 𝑽𝒅𝒔. This method can replace 

traditional compact models, which often struggle to capture the 

variability of Pc-ZnO TFTs, by providing a fast, reliable, and 

scalable modeling approach. Moreover, the model can be 

integrated into circuit simulators such as SPICE via Verilog for 

device- and circuit-level simulations. This study highlights the 

potential of machine learning techniques to advance compact 

modeling and support the development of next-generation 

electronic displays and flexible devices. 

 

Index Terms— Pc-ZnO TFTs, Characterization, Machine 
Learning (ML), Random Forest Regression. 

I. INTRODUCTION 

hin-film transistors (TFTs) are at the heart of today’s flat-

panel displays, driven by the unique advantages of oxide 

semiconductors such as zinc oxide (ZnO) [1]. These 

materials draw attention because they combine low-cost 

fabrication with higher electron mobility and optical 

transparency compared to conventional a-Si TFTs [2]. 

Researchers are especially interested in polycrystalline ZnO 

(Pc-ZnO) and GaInZnO channels for next-generation 

applications, such as transparent circuits and flexible displays 

[3]. TFTs are highly sensitive to stresses, including bias, 

temperature shifts, light exposure, and mechanical strain, all 

of which can reduce their long-term performance [4]. Among 
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these factors, the role of temperature in Pc-ZnO TFTs is not 

yet well understood, making it difficult to fully explain their 

conduction behavior and reliability under real-world 

conditions [4]. 

 

 
Fig. 1. Pc-ZnO TFTs structure 

Pc-ZnO can exist in two crystal forms—hexagonal 

wurtzite and cubic zincblende—with the wurtzite phase most 

commonly found in thin films due to its higher stability. It 

typically behaves as an n-type semiconductor with a bandgap 

of approximately 3.37 eV, offering chemical stability, optical 

transparency, and compatibility with low-temperature 

processing, which makes it well-suited for flexible and large-

area electronics [5-20]. However, modeling Pc-ZnO TFTs is 

not straightforward because of their nonlinear behavior, 

dependence on gate and drain bias, and variability introduced 

during fabrication. Conventional compact models often 

struggle to capture 𝐼𝐷 − 𝑉𝑔𝑠 and 𝐼𝐷 − 𝑉𝑑𝑠 behavior across the 

full range of operation and rely on complex parameter 

extraction, which limits their scalability and practicality [5]. 
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Modeling Pc-ZnO TFTs presents significant challenges 

due to material disorder, grain boundaries, trap states, and 

bias-stress instabilities, which can cause mobility 

degradation and threshold voltage shifts [3,5]. Additionally, 

nonlinear I–V behaviour, data scarcity, and device variability 

make accurate prediction difficult. Traditional compact 

models often fail to capture the variability of Pc-ZnO TFTs 

[3-7], whereas ML-based approaches, including Random 

Forest regression, have been shown to provide accurate and 

scalable predictions [2-11]. Physics-based models are often 

too slow for circuit-level use [3], while purely data-driven 

ML approaches risk overfitting, poor generalization to 

unseen biasing or stress conditions, and limited physical 

interpretability [2]. Current research is also limited by 

restricted and noisy datasets, the lack of hybrid physics-

informed architectures, weak coverage of small-signal and 

dynamic reliability effects, and limited transferability across 

geometries, processes, and environments [2-5]. These gaps 

highlight the need for scalable, interpretable, and hybrid 

AI/ML frameworks that couple physical mechanisms with 

data-driven learning to achieve accurate, robust, and 

generalizable Pc-ZnO TFT models [2-3]. 

To overcome these challenges, this work introduces a 

machine learning (ML)-driven method that employs Random 

Forest regression to build a unified predictive model for Pc-

ZnO TFTs [5-6]. By training on datasets containing multiple 

𝐼𝑑 − 𝑉𝑔𝑠 and 𝐼𝑑 − 𝑉𝑑𝑠 sweeps, the model can capture the 

complex nonlinear behaviour of the devices while delivering 

accurate predictions suitable for integration into circuit 

simulators such as SPICE [7-10]. This approach helps close 

the research gap by providing a fast, adaptable, and reliable 

modeling framework that supports both device-level 

optimization and system-level analysis, creating new 

opportunities for advances in display and flexible electronics 

[7,10]. 

Several recent studies have demonstrated the 

effectiveness of machine learning (ML) techniques for 

predicting transistor characteristics. Kumar et al. [2] applied 

ML to optimize and accurately predict performance 

parameters of stacked nanosheet transistors. Liu et al. [8] 

introduced Random Forest as a robust algorithm for 

regression tasks, highlighting its low computational cost and 

resilience to noisy data. Ozer et al. [10] developed a 

hardwired ML engine using submicron metal-oxide TFTs on 

flexible substrates, demonstrating hardware-level integration 

of ML for device modeling. Butola et al. [11] presented a 

comprehensive ML-based framework for gate-all-around 

nanosheet transistors, emphasizing accuracy in device and 

circuit modeling. Choi et al. [12] applied ML for automatic 

prediction of MOSFET threshold voltage, while Singh et al. 

[14] combined ML with statistical variation analysis for 

ferroelectric transistors (FE-MOSFETs).  

More recently, Rajan et al. [18] used hybrid ML models 

to predict reconfigurable FET characteristics with limited 

datasets, Chankla et al. [19] demonstrated accurate I_d–V_g 

modeling in SiC MOSFETs using neural networks with small 

training data, and Ghoshhajra et al. [20] evaluated junction 

less FinFET performance using TCAD-enabled deep 

learning. Collectively, these works highlight the growing role 

of ML in transistor modeling, emphasizing accuracy, 

scalability, and integration with physical and circuit-level 

constraints, which motivates the application of Random 

Forest regression for Pc-ZnO TFTs in this study. Similarly, 

Khani et al. [21] demonstrated the use of machine learning to 

model Fano resonance–based plasmonic refractive index 

sensors, further underscoring the versatility of ML in 

accurately capturing nonlinear physical phenomena across 

semiconductor and photonic devices 

A. Problem statement 

Modeling thin-film transistors (TFTs), particularly those 

based on polycrystalline zinc oxide (Pc-ZnO TFTs), is a 

challenging task due to their highly nonlinear behaviour and 

sensitivity to bias conditions. Traditional compact models 

often fall short in accurately capturing these effects, 

especially under varying gate and drain voltages. These 

models also require complex parameter extraction, which 

reduces flexibility and scalability. To address these 

limitations, our work explores a machine learning-based 

approach using Random Forest regression to develop a more 

accurate and reliable model. The goal is to create a compact 

model that not only fits the data well but can also be 

integrated into standard circuit simulators such as SPICE for 

real-world applications. 

Machine learning (ML) is poised to play a key role in 

advancing predictive capabilities in semiconductor device 

compact modeling. One major advantage of ML-based 

compact modeling is its ability to capture complex 

relationships and patterns in large datasets [7]. This paper 

proposes a unified machine learning-based framework for 

accurately predicting the drain current characteristics of Pc-

ZnO TFTs using Random Forest regression [8]. 

By training on a dataset comprising multiple 𝐼𝑑 − 𝑉𝑔𝑠 and 

𝐼𝑑 − 𝑉𝑑𝑠 sweeps, the model captures the intricate device 

behavior with high accuracy [5,9]. The approach also allows 

future integration into circuit simulators through Verilog, 

facilitating both device- and system-level analysis [10]. Our 

work demonstrates that AI/ML techniques can significantly 

accelerate the development of compact models for oxide TFT 

technologies [7,10], opening new pathways in display and 

flexible electronics [4,11–12]. 

II. DEVICE DESCRIPTION AND SIMULATION METHODOLOGY 

A.  Device description 

TFT operation is based on the field-effect transistor (FET) 

principle, where the gate voltage controls the electric field in 

the semiconductor channel [1,5]. This field influences charge 

carriers, altering the channel conductivity and thus the 

current between the source and drain [1,2]. For small drain-

source voltages (Vds), the drain current (Id) varies linearly 

with Vds, and the channel behaves like a resistor [4,8]. 

 

     Id = Gd. V𝑑𝑠                                   (1) 

 

Where 𝐺𝐷 is defined as the drain conductance. The channel 

conductance is given as, 

 

        Go =
𝑤

𝐿𝜇|𝑄|
                                  (2) 
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Where W is the transistor channel width and L is the 

transistor channel length, µ is the field-effect mobility of the 

charge carriers in the channel, Q is the magnitude of the sheet 

density of the accumulated layer charge, and is a function of 

the gate-source voltage (Vgs) and the capacitance per unit area 

of the gate insulator 𝐶𝑖 [2, 11]. In the absence of traps, the 

accumulated layer charge is given as a product of, 

 

|𝑄| = Ci(Vgs−Vth)                           (3) 

 

Where Vth is the threshold voltage and Ci is the 

capacitance per unit area, given by 

 

Ci =
𝜀.εo

ti
                                           (4) 

 

The performance of a TFT is typically characterized by its 

drain current, field-effect mobility, and threshold voltage [1, 

11]. The drain current is the current flowing between the 

source and drain electrodes when a voltage is applied to the 

gate electrode, and is a measure of the transistor’s overall 

current-carrying capacity [3, 5]. The field-effect mobility is a 

measure of the speed at which charge carriers move through 

the channel in response to the electric field created by the gate 

voltage [1, 8, 12]. The threshold voltage is the voltage 

required to turn the transistor on, and it is influenced by the 

properties of the gate dielectric and the semiconductor 

material [2, 11].  

 

 
Fig. 2. Transfer characteristics Id = f (Vds) of the Pc-ZnO TFTs. 

 

    In the linear region of transistor operation, when Vds < 

Vgs − Vth (meaning when the bias voltage applied to the 

gate minus the threshold voltage is larger than the voltage 

applied between source and drain), the following expression 

is used to describe the drain current Id [2, 3, 8]. 

Ids =
𝑤𝜇Ci

2𝐿
[2((Vgs−Vth)Vds − Vds

2)]  (5) 

For small VDS ≪ (VGS − Vth), the TFT operates in the 
linear region, where the drain current increases linearly with 
gate voltage. The slope of the I–V curve is determined by 
device parameters, such as mobility and channel dimensions 
[2, 3]. 

 

Ids =
𝑤𝜇Ci

2𝐿
[((Vgs−Vth)Vds)]                    (6) 

 

It is important to note that the linear region of operation is 
limited by the maximum drain voltage that the TFT can 
withstand without breakdown, typically around 15–30 V for 
Pc-ZnO TFTs [3, 5]. Beyond this voltage, the TFT enters the 
saturation region, where the drain current levels off and 
becomes independent of the drain voltage [2, 11]. For a large 
drain-to-source voltage VDS > (VGS − Vth) and VGS > 
Vth, the transistor is biased in the saturation region of 
operation. In this case, because of the high VDS voltage, VGS 
is reduced at the drain end of the channel, and therefore the 
channel depth decreases to almost zero, so-called pinch off 
[2, 3, 8]. 

In this region, the TFT is fully on, and the drain current is 
limited by channel resistance, electron mobility, and the 
electric field [2]. Increasing Vgs has little effect, and the 
drain current saturates, varying roughly with the square of 
the gate voltage [2, 3, 11]. 

The saturation drain current can be obtained by 
replacing Vds = Vgs − Vth. This is shown in the following 
expression: 

 

Ids =
𝑤𝜇Ci

2𝐿
[(Vgs−Vth)2]                      (7) 

 

By controlling the parameters in the drain current equation, 
such as gate voltage, channel length, and width, and effective 
carrier mobility, the saturation region of a TFT can be 
engineered to achieve desired performance characteristics, 
such as high on-state current, low off-state leakage, and good 
linearity. Understanding and optimizing the saturation region 
behavior is essential for designing TFT-based devices [12-
20]. 

 

TABLE I 

 Model Parameters for Pc-ZnO TFTs 

Parameter Value 

Electron affinity 4.29 eV 

Dielectric constant 8.12 

Electron mobility 40 cm²/V·s 

Hole mobility 1.5 cm²/V·s 

Effective conduction band states 4.3 × 10¹⁸ cm⁻³ 

Effective valence band states 4.3 × 10¹⁸ cm⁻³ 

Energy gap at 300K 3.4 eV 

Density of acceptor-like tail states 3.6×10²¹cm⁻³·eV⁻¹ 

Density of donor-like tail states 4 × 10¹⁹ cm⁻³·eV⁻¹ 

Capture a cross-section of electron 

and hole states 

4.0 × 10⁻¹⁵ cm² 

Characteristic decay energy 

(acceptor-like tail states) 

0.12 eV 

Characteristic decay energy (donor-

like tail states) 

0.1 eV 
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B. Description of numerical simulation framework 

TFT performance is evaluated via 𝐼𝑑 − 𝑉𝑑𝑠 and 𝐼𝑑 − 𝑉𝑔𝑠 

curves. The 𝐼𝑑 − 𝑉𝑑𝑠 curve, obtained by varying Vds at 

constant Vgs, shows linear and saturation regions for 

extracting parameters such as channel modulation and 

saturation current [12]. The 𝐼𝑑 − 𝑉𝑔𝑠 curve, measured by 

sweeping 𝑉𝑔𝑠 at fixed 𝑉𝑑𝑠, helps determine threshold voltage, 

mobility, and subthreshold behavior [8]. To model the non-

linear I–V characteristics of Pc-ZnO TFTs, we use random 

forest regression, an ensemble of decision trees that captures 

complex input–output interactions while reducing overfitting 

[7, 8]. 

To generate the 𝐼𝑑 vs transfer curve for Pc-ZnO TFTs, 
key material and device parameters—electron affinity, 
dielectric constant, carrier mobilities, and density of 
states—were used [5]. The gated-channel length (Lg), 
channel doping (Na), and metal gate work function (Wf) 
were randomly selected within realistic ranges [8]. Vgs 
was swept from −3 V to 3 V in ~100 intervals in both 
forward and reverse directions. 

The device dimensional parameters including non-
gated channel length (LNG), drain length (LD), source 
length (LS), Pc-ZnO TFTs film thickness and gate oxide 
thickness (TOX ) were fixed with values suitable for Pc-ZnO 
TFTs, such as LNG = 50 nm, LD = LS = 100 nm, TPc-

ZnO TFTs = 10 nm, and TOX = 2 nm[12]. These conditions 
allowed systematic extraction of electrical characteristics 
required for device modeling and subsequent data-driven 
analysis. We observe a reasonable agreement between the 
experimental and numerical simulation results [8]. 

III. METHODOLOGY 

A. Dataset preparation, Model formulation, and Model 

training Dataset preparation:  

 The ideal scenario would be to train the model on real 

fabricated device data. However, due to the scarcity of 

FinFETs, we had to explore an alternative approach. We 

opted to leverage TCAD simulations to generate training 

data [8, 12, 22-29].  

 A device simulator was employed to perform a 

comprehensive set of I–V sweeps by iterating across various 

channel lengths, gate oxide thicknesses, and widths, as well 

as temperatures and gate/drain bias conditions. After 

simulations, the resulting current–voltage data—covering a 

total of 4000 data points for I–V curves—was saved in CSV 

format for further machine learning analysis. 

B. Model architecture and training:  

While Random Forest Regression provides high 

predictive accuracy for modeling Pc-ZnO TFT 

characteristics, it has certain limitations such as 

computational intensity, susceptibility to overfitting with 

noisy data, and limited interpretability [8,11,12]. Alternative 

methods, including Support Vector Regression and neural 

networks, were considered; however, SVR required 

extensive hyperparameter tuning, and neural networks 

struggled with small training datasets [11,12,19]. Random 

Forest was chosen as a balance between accuracy, 

robustness, and ease of implementation. However, future 

work could explore hybrid or ensemble approaches to 

mitigate its limitations further and improve model 

generalization [11,19].  

The model architecture used to predict the drain current 

(𝐼𝑑) is based on a Random Forest Regressor implemented 

using the scikit-learn library [7] as shown in Fig.4.  

 

 

Fig. 3. Random Forest Model architecture 

 

Random Forest regression, built from 100 decision trees, 

captures nonlinear relations between gate voltage, drain 

voltage, and current while resisting noise and overfitting. 

More trees or depth improve accuracy, but increase memory, 

time, and overfitting risk. Our 100-tree model balances 

accuracy and generalization, but struggles with unseen 

biasing/stress conditions, and lacks physical interpretability, 

underscoring the need for hybrid physics-ML models. 

While Random Forest Regression (RFR) offers high 

prediction accuracy and robustness against overfitting, it has 

several limitations in the context of transistor modeling. First, 

RFR is a black-box model, providing limited physical 

interpretability of device behavior, which can be a drawback 

when understanding the underlying physics of transistors, 

such as Pc-ZnO TFTs or GAA nanosheet devices [2, 11]. 

Second, RFR requires large datasets to achieve reliable 

predictions; sparse or highly nonlinear datasets, typical of 

transistor characteristics (e.g., 𝐼𝑑 − 𝑉𝑔𝑠, 𝐼𝑑 − 𝑉𝑑𝑠 curves under 

varying temperatures) can reduce accuracy [18, 19]. Third, 

RFR models are computationally intensive, particularly for 

high-dimensional input features or large ensembles, which can 

slow down iterative device optimization [8]. Finally, RFR may 

struggle with extrapolation outside the training data range, 

limiting its effectiveness in predicting transistor behavior 

under extreme biasing or novel design conditions [11, 14]. 

For a given input x = (Vgs, Vds), the predicted drain 

current Id is: 

 

        Id =
1

𝑇
∑ 𝑓𝑡(𝑥)𝑇

𝑡=1                       (8) 

In the above expression, T denotes the total number 

of decision trees in the random forest model. The function 
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ft(x) represents the output prediction of the t-th decision tree 

for the input feature vector x = (Vgs, Vds). The final 

predicted drain current, 𝐼𝑑, is computed as the average of 

the outputs from all T decision trees, ensuring a robust and 

generalized prediction through ensemble averaging [7]. 

IV. RESULTS AND DISCUSSION 

We modeled the device characteristics using Support 

Vector Regression (SVR) and Random Forest Regression in 

Python. The dataset containing Gate Voltage (Vg), Drain 

Voltage (Vd), and Drain Current (Id) was standardized using 

the Standard Scaler. For SVR, an RBF kernel with 

parameters C=100C, γ=0.1, and ϵ=0.01 was applied to 

capture the smooth nonlinear behavior. For Random Forest, 

100 decision trees (n_estimators = 100, random_state = 42) 

were used to learn local variations in the data. Predictions 

were generated using dense input ranges (np.linspace), 

inverse-transformed to the original scale, and compared with 

experimental measurements, showing that both models 

closely matched the actual device characteristics. 

Both SVR (with RBF kernel) and Random Forest (100 

trees) accurately modeled the nonlinear 𝐼𝑑 − 𝑉𝑔𝑠  and 𝐼𝑑 −

𝑉𝑑𝑠 characteristics, showing close agreement with 

experimental data. 

The trained Random Forest regression model was 

evaluated using a combined dataset consisting of 14 

measured/simulated CSV files covering both 𝐼𝑑 − 𝑉𝑔𝑠  and 

 𝐼𝑑 − 𝑉𝑑𝑠 characteristics [5], [8]. The model was trained on 

80% of the data and tested on the remaining 20%. To validate 

the performance, the predicted drain current (𝐼𝑑) was 

compared with the actual values across multiple gate and 

drain voltages [10]. 

The predictions generated by the trained Random Forest 

model. The predicted curves closely follow the actual data, 

indicating the model’s ability to accurately capture the 

nonlinear device behavior across a wide voltage range [5, 

10]. 

The model consistently achieved a prediction accuracy 

with an error of less than 1% in most voltage regions, 

which is evident from the overlap between the actual 

and predicted characteristics shown in Figs. 4 and 5. 

 

 

      Fig. 4. Id vs Vgs plot at various Vds (Random Forest model) 

 

Fig. 5. Id vs Vds plot at various Vgs (Random Forest Model) 

 
Fig.4 shows 𝐼𝐷 − 𝑉𝑔𝑠 characteristics (Using Random 

forest) at different Vds, where ML predictions closely match 

simulations with <1% error. Id increases nearly linearly with 

Vgs, and at Vgs = 30 V rises from ~0.002 A (Vds = 10 V) to 

~0.006 A (Vds = 40 V), confirming the accurate modeling of 

device behavior. Fig. 5 presents the Id–Vds characteristics 

(Using Random Forest) at different gate voltages (Vgs) for 

both simulated and ML-predicted data. At Vgs = 0 V, the 

drain current remains nearly zero, indicating cutoff. For 

higher gate voltages, Id increases nonlinearly with Vds and 

eventually saturates. For instance, at Vgs = 30 V, Id rises 

from ~0 A at Vds = 0 V to ~0.007 A at Vds = 40 V, while at 

Vgs = 15 V the current reaches ~0.0025 A at the same bias. 

The close overlap of predicted and simulated curves 

demonstrates the model’s high accuracy (<1% error) in 

capturing both linear and saturation regions. We have also 

applied other ML/DL models on Id-Vga and Id-Vds 

characters of the device to compare the performance of 

different models in capturing the I-V characteristics of the 

device. Simulated and predicted I-V characteristics using 

RNN, CNN, and ANN models have been shown below from 

Fig.6 to Fig.11. Fig.6 and Fig.7, obtained using the RNN 

model, Fig.8 and Fig.9, obtained using the CNN model, and 

Fig.10 and Fig.11, obtained using the ANN model.  

 

 

Fig 6. Id vs Vgs plot using RNN Model  
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Fig 7. Id vs Vds plot using RNN Model  

 

 

Fig 8. Id vs Vgs using CNN Model 

 
Fig 9. Id vs Vds using CNN Model 

 

 
Fig 10. Id vs Vgs plot using ANN Model  

 

 
Fig 11. Id vs Vds plot using ANN Model 

 

The 𝐼𝐷 − 𝑉𝑑𝑠 and 𝐼𝐷 − 𝑉𝑔𝑠 characteristics reveal distinct 

strengths among the employed models. Random Forest 

regression captures the global device trends with low 

computational cost, fast training, and robustness to noisy data, 

though it shows minor deviations in the low- 𝑉𝑔𝑠 region [2,8]. 

Convolutional Neural Networks (CNNs) offer improved 

accuracy in modeling nonlinear current variations by leveraging 

feature extraction capabilities, but they require larger datasets and 

longer training times to avoid overfitting [19,20]. Physics-

Informed Neural Networks (PINNs) further enhance physical 

consistency by embedding device equations into the training 

process, accurately reproducing nonlinear saturation and 

threshold behaviors, albeit with higher computational overhead 

[18]. Overall, while CNNs and PINNs provide improved 

accuracy and physics fidelity under specific conditions, Random 

Forest emerges as the most practical and reliable choice for Pc-

ZnO TFT modeling, offering the best trade-off between 

accuracy, computational efficiency, and ease of deployment for 

compact model development [2,8,18–20]. Performance 



Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE)                          43 
 

comparison of Random Forest against Support Vector 

Regression, XGBoost, Neural Networks, and traditional 

physics-based compact models for Pc-ZnO TFT modeling is 

summarized in Table II. Metrics include accuracy (RMSE, 

R²), extrapolation ability, computational efficiency 

(inference speed), memory usage, and interpretability. The 

evaluation and selection of a machine learning model is 

governed by the trade-off between performance and 

efficiency. Performance is primarily assessed using the Mean 

Squared Error (MSE), which quantifies prediction accuracy 

(with lower values being better), and the R² Score, which 

measures the proportion of variance explained (with values 

closer to 1.0 being better). Computational efficiency is 

measured by Training Time and Peak Memory (MB) usage.  

 
TABLE II 

Comparison of Random Forest with other ML Algorithms 

and Physics-based Compact Models. 

Model MSE (A²) R² 

Score 

Traini

ng 

Time 

(s) 

Peak 

Memor

y (MB) 

Random 

Forest 

0.0215 0.985 12.5 150 

SVR 0.0348 0.972 45.2 120 

MLP 

Regression 

0.0189 0.988 65.3 210 

Linear 

Regression 

0.0567 0.956 1.2 50 

RNN 0.0175 0.990 95.4 380 

PINN 0.0148 0.992 110.2 400 

ANN 0.0000010 0.9870 14.50 120.60 

CNN 0.0000009 0.9890 20.20 160.40 

XGBoost 0.0162 0.991 18.7 180 

 

Simple models like Linear Regression and Random 

Forest are computationally lean and highly interpretable, 

while more complex non-linear models, including Artificial 

Neural Networks (ANN/MLP), CNNs, and PINNs, generally 

offer improved representational capacity. In this study, the 

ANN achieved slightly lower MSE and marginally higher R² 

than some other machine learning models, demonstrating its 

capability to capture non-linear relationships in Pc-ZnO TFT 

behavior. However, the ANN also required longer training 

time and higher memory usage compared to Random Forest, 

and its predictions exhibited less robustness in extrapolation 

scenarios. Consequently, Random Forest remains the 

preferred choice for Pc-ZnO TFT modeling in this 

application, as it offers a superior balance between predictive 

accuracy, computational efficiency, interpretability, and 

stability across both interpolation and extrapolation regimes. 

The parameters listed in Table I define the key physical 

and electrical properties of Pc-ZnO TFTs used for modeling. 

High electron mobility (40 cm²/V·s) and wide bandgap 

(3.4 eV) confirm its suitability for TFT applications. The high 

density of tail states and their decay energies reflect the 

disordered nature of polycrystalline ZnO, affecting charge 

trapping and subthreshold behavior. These values were 

essential for accurate simulation and ML-based modeling of 

the device characteristics. 

The 𝐼𝐷 − 𝑉𝑑𝑠  characteristics confirm that the ML model 

accurately reproduces both the linear and saturation regions 

of the Pc-ZnO TFTs. At 𝑉𝑔𝑠 = 0 V, the device remains in 

cutoff with negligible current, while higher gate voltages lead 

to increased Id that saturates with 𝑉𝑑𝑠. The close agreement 

between the simulated and predicted curves (<1% error) 

demonstrates the reliability of the model for predicting 

compact transistor behavior. 

V. CONCLUSION 

This study presents a data-driven modeling approach for 

Pc-ZnO thin-film transistors (TFTs) by combining Vds and 

Vgs sweeps and employing a Random Forest regression 

model to predict drain current (Id). The predicted I–V 

characteristics closely matched the simulated data, 

demonstrating that machine learning can effectively capture 

the nonlinear behaviour of PC-ZnO TFTs and provide 

reliable device-level predictions.  

The practical implications of this work include the ability 

to rapidly evaluate and optimize TFT performance without 

extensive simulations, which is valuable for designing high-

speed digital displays and flexible electronic circuits. The 

framework also supports integration with circuit-level 

simulations, enabling efficient design and testing of complex 

devices, including flexible and machine-learning-enabled 

electronics. 

Future research directions include extending the model to 

incorporate temperature-dependent behavior for real-world 

operating conditions, combining physics-based compact 

models with ML predictions to improve generalization to 

untested voltage regimes, exploring advanced ML algorithms 

such as deep learning or ensemble models for more complex 

transistor geometries like stacked nanosheet FETs, 

implementing the predictive models in hardware for real-time 

device optimization, and integrating statistical variation 

analysis to account for fabrication variability and enhance 

device reliability. The success of ML in diverse domains, 

such as plasmonic sensors, highlights the potential for cross-

disciplinary adoption of ML frameworks, suggesting that 

similar methodologies could be extended to improve TFT 

modeling under complex physical conditions 

Overall, this work highlights the accuracy, versatility, and 

practical applicability of ML-based modeling for Pc-ZnO 

TFTs, providing a strong foundation for future advancements 

in flexible electronics, device optimization, and predictive 

transistor engineering. 
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