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Abstract— This paper presents a bi-level optimization model
for the siting and sizing of electric vehicle fast charging stations NOMENGLATURE
(FCSs), considering the constraints of the power distribution ..
network. In the presented method, queuing theory and a user “€ts and indices
equilibrium-based traffic assignment model are used to .
determine the size of FCSs. The upper-level problem aims to r Travel origin index
maximize the profit of the FCS owner by determining optimal

locations and capacities of FCSs. The lower-level problem u Travel destination index

minimizes the operational cost of the distribution network while K The path index for moving from origin r to
considering power flow constraints and EV charging demands. N

The bi-level model is transformed into a single-level destination u

mathematical program using the Karush-Kuhn-Tucker (KKT) Parameters
primal-dual optimality conditions of the lower-level problem

due to the linearity of the LL problem. Simulation results on the fr
IEEE 33-bus distribution system and a 25-node transportation a
network show that two FCSs are optimally installed at buses 25
and 32 with 9 and 7 chargers, respectively, yielding a daily profit
of approximately $6,147 for the investor. Sensitivity analysis F r: .
demonstrates that higher electricity selling prices lead to ag Fixed cost in bus k
increased  profitability and expansion of charging
infrastructure, highlighting the effectiveness of the proposed .
framework in capturing the economic interaction between the station on bus k
DSO and private investors. CHF

Traffic load of the road a

t,o Travel time on the road without traffic

ak’  Cost dependent on location and size of charging

Cost of equipment required to build an FCS

Overall daily charging demand (times/day).
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L ional Marginal Pri .
ocational Marginal Prices using standard wall outlets (%)
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f 1P Trip ratio in time t
fct  Traffic flow captured by the kth FCS
i Mean service rate of FCS (vehicles/hour)

qnu  Total traffic load between source r and destination

u
£ Interest rate

capital recovery factor
Npes €8P y

pFeS  Nominal charging power of the fast charging
facility.

variables

fpr,, Traffic load of the kth path between origin r and
«  destination u

ta Travel time on the road a (hour)

Fnk: The total traffic load of the arcs ending at node k

Binary variable indicating the existence of arc a on
the kth path for moving from origin r to destination
u

Sr,u,k, a

Pkt Occupation rate of fast charging facilities of the
kth FCS in time t (%)

pRH Occupation rate of fast charging facilities of the
k kth FCS in the rush hour (%)

Zx Number of charges at the kth station

The number of vehicles entering the candidate

ARH
k charging station during peak hours (vehicles)

Average waiting time for the charging service in

the th FCS during the rush hour (hour)
Charging power of the kth FCS in time t (kW)

Zk Size of the kth FCS
RFCS  The revenue of the FCS investor ($)
Cost™S The cost of the FCS investor ($)

Cv  The investment cost of FCS ($)

Ui Binary variable representing the establishment of
an FCS atbus i

Cost?rt’ The cost of buying energy from the upstream
" network for the FCS investor ($)

P, Active power generation of generator g in time t
(')
HQtrid Active power purchased from the electrical grid at

bus i, in time t (kW)

piLtS The amount of load shedding at bus i (kW)
plftlow Active power flow through line I at time t (kW)

6, , Voltage angle at bus i, in time t

Acronyms

DSO distribution system operator
EV Electric Vehicles

FCS  Fast-charging stations
KKT  Karush-Kuhn-Tucker

LL Lower level

OPF  Optimal Power Flow

oD Origin Destination

PSO
UL Upper Level

Particle Swarm Optimization

I. INTRODUCTION:

he growing adoption of Electric Vehicles (EVS)

highlights the urgent need to expand fast-charging

infrastructure. Fast-charging stations (FCS) significantly
reduce charging time, enhance travel convenience, and
promote EV acceptance. However, their deployment requires
careful planning due to high investment costs and grid
capacity limits. Strategic integration of fast-charging stations
within transportation and power networks ensures efficient
energy delivery and supports the transition toward
sustainable, low-emission transportation.

Recent studies have proposed various optimization
approaches to address the complex problem of locating and
sizing FCSs for electric vehicles. A bi-level optimization
model is proposed in [1] to determine optimal fast-charging
station locations in a metropolitan network, minimizing travel
time and infrastructure costs while considering vehicle types
and traffic congestion. Reference [2] uses a genetic algorithm
to identify profit-maximizing locations and designs for fast
EV charging stations, considering stochastic charging
demand, user-equilibrium traffic, and the interdependence
between congestion, station queues, and price-sensitive
charging behavior. Reference [3] develops an optimization
strategy for allocating FCSs for electric vehicles. The
proposed mixed-integer programming model minimizes
investment and operating costs while considering PV-
integrated carports and battery energy storage systems as
alternative planning options.

When the distribution system operator (DSO) owns and
operates the FCSs, the planning problem becomes integrated,
combining investment and operational decisions under
network constraints. Reference [4] presents a multi-objective
model to determine the optimal placement and sizing of FCSs
along intra-city corridors, integrating transportation and
electrical networks. Reference [5] addresses the optimization
of FCS size and location, taking into account investment,
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operation, and maintenance costs, power system losses, and
reliability costs. A Particle Swarm Optimization approach is
employed to identify the optimal station sizes and locations.
In [6], a strategic framework for ultra-fast EV charging
station planning is proposed, optimizing locations and
charger numbers using the Voltage Stability Index and Harris
Hawk Optimization to minimize total costs. The model also
accounts for uncertainties in charging behavior and electricity
prices via the 2m-Point Estimate Method. In [7], an optimal
allocation and sizing method for EV charging stations in the
Allahabad distribution network is proposed. The approach
minimizes installation costs while enhancing grid
performance based on voltage profile and real and reactive
power loss indices. The nonlinear mixed-integer problem is
solved using an improved metaheuristic algorithm, the
Balanced Mayfly Algorithm. In [8], a multi-objective
optimization approach is presented for the optimal placement
of FCSs, DGs, and shunt capacitors. A Pareto-based hybrid
method combining Grey Wolf Optimizer and Particle Swarm
Optimization is employed to minimize multiple objectives in
a 118-bus radial distribution system.

Several studies have formulated the siting and sizing of
FCSs as bi-level optimization problems to capture the
interaction between DSO, FCS investors, and EV users. In
[9], a bi-level multi-objective model is developed for EV
charging station location planning, simultaneously
considering user preferences and waiting times. The upper
level optimizes station locations and capacities to minimize
total cost and service delay, while the lower level allocates
users to stations to minimize travel time. In [10], a bi-level
optimization model for fast charging station allocation is
proposed. The upper layer maximizes investor profits, while
the lower layer coordinates the expected efficiency of the
charging service supply. In [11], an online vehicle-charging
assignment model is integrated into the fast-charging station
location problem for dynamic ridesharing with electric
vehicles. The bi-level optimization aims to minimize the
fleet’s total daily charging time. In [12], a bi-level
optimization model is developed for the location and sizing
of EV charging stations by jointly considering transportation
and energy demands. The lower level incorporates user
equilibrium traffic conditions as constraints, while the upper
level optimizes the location, capacity, and pricing of new
stations alongside existing ones. In [13], a bi-level
programming model is proposed to determine the optimal
locations of EV charging stations, aiming to minimize
drivers’ range anxiety. In [14], a strategic charging-behavior-
aware model is formulated as a bi-level mixed-integer
program. The lower level models drivers’ charging responses
using a network equilibrium approach, while the upper level
optimizes charging station location and sizing to minimize
overall traffic time and investment costs. In [15], a bi-level
optimization model addresses the strategic location and sizing
of EV charging stations under stochastic vehicle flows and
charging times. The upper level minimizes infrastructure
costs while ensuring probabilistic service requirements on
users’ waiting times, considering route choice responses. In
[16], a bi-level planning model for EV charging stations is
proposed, incorporating traffic conditions and energy
consumption per unit distance. The lower level represents
users’ charging decisions, while the upper level optimizes
station location and capacity. The model is solved using the
Improved Whale Optimization Algorithm and Voronoi
diagrams. In [17], a bi-level optimization model considers the

impact of non-system-optimal driver behavior on EV
charging station capacity. The upper level addresses the
provider’s station location decisions, while the lower level
models drivers’ selfish charging choices to minimize stops.
Reference [18] proposes a bi-level model where the lower
level minimizes daily operating costs through bus scheduling
and charging optimization, while the upper level designs
charging stations using a tabu search algorithm

Several other studies have focused on bi-level optimization
models that primarily consider the transportation network
perspective, emphasizing traffic flow, user behavior, and
route planning in EV charging station deployment. In [19], a
bi-level optimization approach using Particle Swarm
Optimization is proposed to determine optimal EV charging
station locations while minimizing losses and operating costs.
An integrated EV charging planning algorithm manages
connections to avoid peak load issues and severe voltage
drops. In [20], a MILP-based coordinated planning method is
proposed for coupled power and transportation networks,
optimizing new road deployment, EV charging station
placement along these roads, and power network expansion
to support the stations. In [21], a bi-level planning model
considers both investor costs and user satisfaction. The upper
level minimizes construction costs and network losses using
an improved Particle Swarm Optimization, while the lower
level evaluates user satisfaction by minimizing travel time
and expenses, considering queue times and distances through
Dijkstra’s algorithm and queuing theory. In [22], a bi-level
programming model determines optimal EV charging station
allocation in the presence of wind turbines. The upper level
maximizes station profit, while the lower level minimizes
power losses using available sources and dynamic feeder
reconfiguration. The impacts of cryptocurrency miners and
demand-side management are also considered. In [23], a
combined road transport and electric distribution network
model is proposed for strategic EV charging station
deployment. A bi-level optimization approach minimizes
user travel costs, power losses, and voltage deviations,
employing PSO-DS for station placement, convex
optimization for traffic equilibrium, and AC OPF for grid
operation. In [24], a bi-level EV charging station planning
model considers spatiotemporal load distribution under
uncertainty. The lower level predicts charging demand using
OD matrices, dynamic Dijkstra routing, and LHS, while the
upper level minimizes station planning costs and user
behavior, and also accounts for distribution operation costs
and emissions from uncertain renewables. In [25], a bi-level
planning model for EV charging stations in coupled
distribution-transportation networks is proposed to enhance
post-fault security. The upper level optimizes station
locations and capacities, while the lower level designs EV
charging routes to minimize overall travel costs.

Investment in FCSs is typically made by private investors
whose economic objectives often differ from those of the
DSO. Although many studies have addressed the siting and
sizing of FCS, most focus on either transportation behavior
or distribution network operation, and do not capture the
economic interaction between private investors and the DSO,
especially when electricity prices are determined through
network-constrained optimal power flow. To address this
gap, this paper proposes a multi-objective bi-level model that
jointly determines FCS locations, capacities, and energy
exchange prices. The main novelties of this study are as
follows:
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TABLE I
Comparative Analysis of Different Articles with the Proposed Model

Ref Objective function Deq|5|on Traffic model Optim Stakeholders Problem Methode of optimization
number Variables model Considered  Focus
w
g © g z 3
n D T = =
g 2 2 T @ ' pso g g
S °© 3 s 3 owner g 38
2 —
minimizing travel re-routing behaviours
1] time and v g v oo v - - v cross-entropy method
. of travellers
infrastructure costs
- . user-equilibrium
v - - - v v - -V
[2] Maximizing profit traffic GA
maximizing Driving Range-Based
[4] the traffic flow v v Traffic Flow - v - v v v improved PSO
coverage Capturing Model
[y Mmmizngronl simple L PSO
[6]  minimize total costs v v simple - v - v v v Harris Hawk
Optimization
[9]  minimizetotal costs v* v - simple v - v v Vv
[10] maximizes investor “simple v . v ) v v KKT trans
profits
[11] minimize the fleet’s v online vehicle- v v _ . Asurrogate-assisted
total charging time charging assignment optimi approach
[12] minimizes v . User Equilibrium v . v ) v i
infrastructure costs traffic assignment
minimize overall A
o User Equilibrium .
v v - . . v - v = = v
[14] Itnr\allztc mt:e r:teca;r;?s traffic assignment Descent algorithm
Minimizin tailored column
[18] . nizing - v simple oo v - - Vv generation-based
installation costs Co -
heuristic algorithm
[19] minimizing losses . ) v ) v v PSO
and operating costs
[23] ”;'O”S'tr:';gflvuesrelrogsae"se' v v - wafficequilibrium v - - v v - PSO
Prop maximizes investor Ty S oI
v v v traffic +Queing v - v v v v KKT trans

model profits

theory

1- The integration of FCS private investor and DSO
objectives within a bi-level framework.

2- the simultaneous optimization of FCS location, sizing,
and electricity exchange pricing under network constraints,
with the bi-level model transformed into a single-level
formulation using Karush-Kuhn-Tucker (KKT) conditions.

The rest of this paper is organized as follows: the bi-level
model for determining the location and capacity of FCSs and
the DC optimal power flow of the distribution network is
presented in Section Il. Simulation results and sensitivity
analysis are presented in Section Ill, and Section IV
concludes the paper results and future works.

Il. BI-LEVEL OPTIMIZATION APPROACH

In this paper, a two-level model is proposed to represent the
interaction between the charging station owner and the
distribution network operator. Before implementing the two-
level model, the charging demand of each candidate station is
first determined by considering the user equilibrium-based
traffic assignment model and queuing theory. In the two-level
model and at the high level, by determining the energy
purchase price from the distribution network at the location

of each FCS and maximizing the profit of the charging station
owner, the locations of the charging stations are determined.
By determining the locations of the charging stations and
adding the electric power demand of these stations to the
distribution network, and to minimize the cost of energy
production for the distribution network operator, the energy
sales price at each busbar is determined. This price will be the
same as the energy sales price to the charging stations
installed on the same busbar. The energy sales price to the
charging stations is transferred to the high-level problem as a
known parameter, and this process will continue until the
final answer is reached. This model is shown in Fig. 1. The
user equilibrium-based traffic assignment model, the queue
theory, and the UL and LL problems are formulated below.

A. The User Equilibrium-based Traffic Assignment Model

In the proposed method, traffic information is used to
simulate the behavior of electric vehicles and estimate
charging demand. However, raw traffic flow data cannot be
directly used in the planning of charging stations. As a result,
daily origin-destination data are used to generate traffic
flows. To obtain these data, an optimal system allocation
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model is used to generate and allocate traffic flows on each
route of the transportation network [26]. The objective of the
optimal system allocation model is to achieve the minimum
travel cost, according to equations (1a) to (1b).

min_ fr,t, )
Z fpl',u,k = qr‘u vr,Vu (1b)
k
fp, 20 vr, vu, vk (10)
fra = ZZZ fpr,u,k'ér,u,k,a vr,VU,Vk (1d)
r u k
t, =t° 1+b[fr} 19
Ca

Equation (1a) is the objective function of the problem,
which represents the minimization of the travel cost. Equation
(1b) guarantees the principle of network flow conservation.
This relation means that the sum of the flow of all paths
between each origin-destination is equal to the travel demand
of that origin and destination. In this relation, the condition of
non-negativity of the traffic flow on the kth path between
origin r and destination u is also considered. Equation (1d)
indicates that the traffic flow on road a is equal to the sum of
the flows on all paths that include road a. The travel time on
road a, given the accumulated flow on this road, is shown in
(1e).

B. Capacity of Candidate FCSs Based on Queueing Theory
Queuing theory is often used to mathematically analyze the
outcome of random arrivals of customers to receive service
from the system. After obtaining the equilibrium traffic flow
of each route, the random movement of vehicles and the
capacity of charging stations are analyzed using queuing
theory. The charging station service system is considered an
M/M/S queue system. Queue service models are represented
by the abbreviation (A/B/C), where A represents the
distribution between two consecutive arrivals. Since the
arrival time of each vehicle at the charging station is a random
variable, in this paper, the arrivals of these vehicles are
considered as a Poisson distribution. The second term, B,
represents the distribution of the service duration, which is
assumed to follow a uniform distribution, and the third term

Traffic flow in the
transportation network

v

Capacity of FCSs based on
queueing theory

| Obj: maximizing FCS owner profit |

Energy sales

" Location / SizeY
A price to FCS

of FCSs

| Obj: Minimizing the DSO operating costs |

Fig. 1: The prposed bi-level model

represents the number of service providers (chargers at a
station).

One of the important parameters in the Poisson process is
its mean value. It is assumed that electric vehicles have a
similar driving pattern to conventional vehicles and that the
average arrival rate of vehicles at each FCS is proportional to
the traffic flow attracted by that FCS. Thus, the mean arrival
rate of EVs in the kth FCS at time t can be calculated as:

ftnp f
A =C(l-0)1-p) Kt
i 2 T

t k

vk, vt 2a)

The capacity of charging stations can be calculated as a
nonlinear integer programming model, assuming that qu is
independent of the vehicle arrival rate, based on a Poisson
process and an exponential distribution of the service time of
each device according to the M/M/S queue model. Here,
M/M/S represents a queue model with identical servers,
where arrival is determined by a Poisson process and service
time follows a negative exponential distribution [27]:

Obj : min z, (32)
A8 =max {4, | (3b)
WkRH SWallowed vk (3C)
7 pfH Zk. RH
W = G > o K (3d)
A (z))(1-p)
21 RH\" RH \ %
oy = z(zkpkl ), L) (3¢)
oot ()(1-0")
RH
=l (3f)

kM

The objective function shown in (3a) is to minimize the
number of fast charging nozzles required in the FCS.
Equation (3c) shows that the average waiting time for
charging during peak traffic hours should be within a
predefined range. Equation (3d) explains how to calculate the
waiting time in the queue theory. The probability that there
are no vehicles under charging service in the FCS is
represented by mok. By increasing the number of charging
devices, the waiting time in the queue can be reduced. In
general, proper charging service and service facilitation can
significantly increase the penetration rate of electric vehicles.
However, on the other hand, increasing the number of
charging devices increases the investment in the project,
which is not economically feasible. Therefore, in order to
optimally install charging stations, a criterion is used to
consider the tolerance threshold of wallowed customers for
charging at each charging station. In this way, if the
customer's waiting time exceeds a certain time, the customer
will leave the charging station. Since obtaining the inverse
functions and the direct solution of the relationship is a
complex task, a counting method is used to solve it. In this
method, an initial value for the number of charging devices is
assigned to the candidate locations of charging stations
according to the maximum A; in the time periods. In each
iteration, one unit is added to the number of charging devices,
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and WRH is calculated, and its value is compared with Wallowed,
This continues until the average waiting time for charging is
less than a certain value. The obtained value Z, will be the
economic number of charging devices. Once the size of each
FCS is obtained, the total charging demand at each time can
be calculated according to (4a) and (4b).

vkt (4a)

FCS FCS
Bt =Pk Z-P

A
Pre=—L vkt (4b)
C. Upper-Level Problem

The UL problem objective is to determine the location and
capacity of FCS installations, aiming to maximize the profits
of the private owner.

Maximize(RFCS —Cost™ —Ci"") (53)
uL
RFCS — 355! 'ZZU‘ RFCS b)
iel teT
Cost s :36522Costi‘ff (50)
teT keK
inv 1+€ s

o ZU (@™ 2, +0,°2, +0f ) (5d)
~U; bigM < Cost;f <U; bigM (Se)
CostiP <(1-U;)bigM +2; R™ (5f)
Cost{P >—(1-U;) bigM +2; R (50)

According to (5a), the objective function of the problem is
to maximize the profit of the private owner, which includes
the income from selling energy to electric vehicles, the cost
of purchasing energy from the distribution network, and the
cost of establishing FCSs, which are given in (5b) — (5c),
respectively. According to (5e)- (5g), if an FCS is
established, the cost of purchasing energy from the
distribution network will be obtained by multiplying the
purchased power by the hourly price of energy in the relevant
bus.

It should be noted that the energy price per bus is the dual
variable related to the constraint of equality of generated and
consumed power per bus, which is obtained from the low-
level problem.

D.Lower-Level Problem

The lower-level problem aims to minimize the energy
production costs for the distribution network operator. For
this purpose, DC optimal Power flow equations have been
used, which are expressed in (6a)—(6g).

Mlnl{mzeZZw (ch s

+Cgr|d Pg{lgs +ZCISPI5

It,s

(6a)

P FCS

Z Pgts +Pg{'ss = PI _Pllgss
H(g)=i
+ R SR
s(l)=i r(l)=i
R?ZW =B (gs(l)ts _Hr(l),t,s) vits: Pirs (60)

6b
vi,t,s A (60)

it,s

R<PM™<R Wits g4, (60
pits 20 58l (6e)
0< PgtssP VO VLYS 10,05 (60
0<PS<PD,, ViVtVs: i,/ (69)

The primal set of variables for each LL problem is

—primal _ pgrid LS
= P,ltS,PgtS,H,tS,RtS while its dual set of
variables is

dual

—
=
—

= ktiS’plts ! MIJ;s’l'llts’éztls’ggts ' 8gts’T]IJ;s’rllts

The objective function of the low-level problem, which is
to minimize the operating costs of the distribution network, is
shown in (6a). This cost includes DG's energy production
costs, the cost of purchasing energy from the upstream grid,
and the load shedding cost. The equation (6b) ensures
equality of generation and consumption power on each bus.
The DC load flow is expressed in (6c).

The minimum and maximum power passing through each
line is shown in (6d). The equation (6e) indicates that the
distribution network is connected to the upstream grid via Bus
1. The network only receives energy from the upstream grid,
and the possibility of selling energy back is not considered.
The minimum and maximum generator capacities, as well as
the curtailed load, are specified in the (6f)-(69).

It is worth noting that the dual variable of each constraint
is written in the same equation.

E. Transforming the Bi-Level Model to a Single-Level

If the LL problem is linear and convex, the bi-level model
can be transformed into a single-level model using the KKT
conditions, which introduce inherently  non-linear
complementary constraints. Since the proposed model’s LL
problem is linear and convex, the KKT conditions are applied
to convert it into a single-level problem. This single-level
linear optimization problem, known as a Mathematical
Program with Equilibrium Constraints (MPEC), can then be
solved using solvers such as CPLEX.

Maximize (la
ximize (12) (7a
Subject to

7b
(5b)-(59),(6b), (66) ()
Cg;'d ~Aigs =9, _“ =0 Vvi=Lvtvs (7c)
eyt = Aissyns Pes ~ Mt s =0 (7d)

vit,s

c® —Aits —Mits +77iJ,rt,s =0 Vvits (71
pr(i):l,t,s _ps(i):l,t,s =0 Vi, t, s (79)
Os(P Plftu;w) L f1s=0 v, vtys (7h)
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MPEC
Optimal siting /sizing of FCSs
Maximizing the profit of FCS invester (UL objective
function)
Subject to:
Upper-level constraint
lower level constraint
Optimization constraint of KKT
complementary constraint of KKT

Fig. 2: The framework of the proposed model as MPEC

OS(PL?EWJF;I)L rs20 VILYLVS  (70)
0< pﬁ{“sd L8>0 vi=1vtvs (79)
0<PS L 7,20 vivtvs (7k)
0<(PD,,-P:l) L7, 20 vivtys  (7)
0<P, L6, =0 vg,vtvs (7m)
0< (Eg_ Pg,t,S) 1 b;m 20 g, vt v (7n)
0<P’ 17,20 Vivtvs (70)
0<PD, -P; Llp, 20 vivtvs  (7p)

Eqg. (7a) shows that the MPEC model objective function is
the same as the UL problem function. Constraint (7b)
contains the UL constraints and the equality constraints
included in the LL problems. Equalities (7¢)—(7g) and the
complementarity conditions (7h)—(7p) are the KKT
optimality conditions of the LL problems.

F. MPEC Linearization

The MPEC single-level model is a non-linear problem
because of complementary constraints, in (7h)—(7p). Because
the presence of non-linear complementary constraints makes

— 1

I o pa
s =
——19
FCS H—1o —1* 31
@& o, 4
1 » '|'7— &L s
8 26
9 27
FCS+—10 —— 28
11 29
-] 12_ 30
13 31
——14 FCS | 32
-+ L=
—t—16
—17
el

Fig. 3: IEEE 33-bus electrical network

the obtained single-level model non-linear, the suggested
model is linearized using a technique based on auxiliary
binary variables and suitably large integers. For example,
linearization of 0 < a L b > 0is (8): [28]

0<a<UM
0<b<(1-U).M (8)
U 6[0,1]

Note that the variables of the resulting MILP are those
included in the set, as well as the auxiliary binary variables
used for the linearization of the complementarity conditions.
The framework of the proposed model as MPEC is illustrated
in Fig. 2.

I1l. CASE STUDY

To implement the proposed concepts, the IEEE 33-bus
system [29] (Fig. 3) and the transportation network presented
in [30] (Fig. 4) have been used. The transportation network
includes 24 traffic nodes and 21 Sioux Falls routes. This
network consists of 76 paths, 24 nodes, and 552 origin-
destination pairs. The loads at various buses of the
distribution network follow a 24-hour load profile as shown
in Fig. 5. The network operates at a voltage level of 12.66 kV
and is fed from the substation located at bus 1. The maximum
power passing through the lines is assumed to be 3000 kW.
Additional information about this network can be found in
[30]. Candidate locations for installing FCS and the
investment costs associated with each location are provided
in Table I.
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TABLE |
Construction Costs of FCS
Candidate 1 2 3 4 5
FCS
location 122 3 102 152 182
6P (10> (20 (25> (32
aCHF(10%8) 2.35 2.35 2.35 2.35 2.35
o'S(10%) 1.017 1068 0.814 0916 1.017
ok(10%) 163 163 163 163 163
2 node number in transportation network
@ node number in electrical network
300
-=-Tnode 3
—~250 =e=Tnode 10 |-
Tnode 12

=+=Tnode 15 |
Tnode 8

| | | .
1 5 10 15 20 2
time (hour)

Fig. 6 : FCS hourly demand

Considering the candidate locations for installing FCSs and
using the user equilibrium-based Traffic assignment and
queuing theory models, the power demand of each candidate
FCS is shown in Fig. 6. The electricity selling price to
electric vehicles, which is one of the key factors influencing
the charging station owner’s decision, is also shown in Fig.
7 .Other parameters required to implement the model are also
given in the Table II.

TABLE Il
Settings of Some Crucial Parameters
parameter value parameter value
Zmin 6 Zmax 10
Wallowed 5 min NEcs 5
g 10% Cis 2.5%/kwh
Bsell 1.35 $/kWh
TABLE Il
Summary of Simulation Results
parameter value
Optimal installation location [15,18]
Charger number [9,7]
FCS Owner's profit 6,147 $
Investment cost 139,255 $

active load (p.u)
=
=

0.2 I I I I I I
2 4 6 8 10 12 14 16 18 20 22

time (h)

Fig.5: Load profile

Fig. 4: Sioux Falls transportation network

FCS cost
FCS revenue

2,183,639 $
2,329,041 $

A. Simulation and results analysis

The proposed MILP bi-level model was implemented in the
GAMS software, and with the CPLEX solver, the results of
which are given in Table I1I.

Analyzing the results, the FCS owner will establish two
FCS at traffic nodes 15 and 18 (25 and 32 of the electrical
network) with 9 and 7 chargers, respectively. By establishing
these two stations, the station owner will earn a profit of
$6,174, of which 139,255 $ will be spent on establishing the
station and $2,183,369 on purchasing energy from the
distribution network. There will also be an income of
$2,329,041 from selling energy to electric vehicles.

energy price ($/kwh)

2 46 8§ 10 12 14 16 18 20 22 24
time
Fig. 7: Price of purchasing energy from the upstream network during the
day

In this case, the cost to the DSO is 105,934,300 $. In this
case, the cost of generating energy by DGs, the cost of
purchasing energy from the upstream network, and the cost
of LS in one day are 31,496 $, 246,440 $, and 12,293 $,
respectively. Given the presence of three DGs in the
distribution network, the active power generated by each DG
is shown in Fig. 8
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DG active power (kw)

T T s

Y ¥~ 7 T T
2 4 6 8 10 12 14 16 18 20 22 24
time (hour)
Fig. 8: DG active power

Fig. 9 illustrates the temporal and spatial variations of the
nodal electricity prices across different buses over a 24-hour
period. As shown, the LMP values are generally low and
uniform during off-peak hours, indicating balanced power
flow and low network congestion. However, during hours
16-19, a significant increase in the LMP is observed at
several buses (particularly around buses 5 and 20), reflecting
higher demand and possible local congestion in the
distribution feeders. These higher nodal prices are directly
linked to the power balance constraints in the lower-level
optimization, where dual variables represent the marginal
cost of supplying an Additional unit of power. These LMPs
are used as the reference prices for energy transactions
between the DSO and the FCS owners in the bi-level
framework.

nodal energy price

10
15

hour

bus number

Fig. 9: nodal energy price

100

80

60

40

load shedding (kw)

204

0

bus number

Fig. 10: Load shedding

TABLE IV
Optimal Locations and Number of FCSs Under Different
Electricity Selling Prices to EV Drivers

Price rofit Bus Chargers
($/kWh) pro number number
1.35 6,146 25,32 9,7
1.36 23,398 25,32 9,7
1.37 40,650 25,32 9,7
1.38 59,390 5,25,32 6,9,7
1.39 86,037 5,10,25,32 6,8,9,7

The amount of LS on each bus over 24 hours is also shown
in Fig. 10. As illustrated in the figure, during the early hours
before 8:00, when the network load is relatively low, no load
shedding occurs. However, as the demand increases after this
period, certain buses experience load curtailment to maintain
system stability and prevent overloading conditions.

B. Sensitive analysis:

To assess the robustness of the proposed model, a
sensitivity analysis is performed on the electricity selling
price to EVs, which directly impacts the profitability and,
consequently, the location and capacity decisions of the
charging stations.

As shown in Table IV, the location and number of FCSs
change with variations in the electricity selling price to
electric vehicles. At lower prices (1.35-1.37 $/kWh), the
optimizer selects buses 25 and 32 as the most profitable
locations, each with 9 and 7 chargers, respectively. In this
range, the profit gradually increases with the selling price,
while  the  optimal  sites  remain  unchanged.
When the price increases to 1.38 $/kWh, an additional station
is installed at bus 5, indicating that higher revenues justify
expanding the charging infrastructure. Finally, at 1.39 $/kWh,
another station appears at bus 10, leading to a network of four
charging stations and the highest total profit.
This trend shows that as the selling price rises, the
profitability of the investment improves, encouraging the
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deployment of more FCSs in additional locations across the
network.

IV. CONCLUSION AND FUTURE WORK

In this study, a bi-level optimization framework is
developed for the siting and sizing of fast-charging stations,
considering the interaction between the distribution system
operator and the FCS investor. The lower level minimizes
network operational costs via a DC optimal power flow,
generating locational marginal prices that are passed to the
upper level. The upper level maximizes the investor’s profit
by determining optimal FCS locations and capacities based
on electricity prices and charging demand, modeled through
a user-equilibrium traffic assignment and M/M/S queuing
theory. The model is reformulated as a mixed-integer linear
program using Karush—Kuhn-Tucker conditions and solved
in GAMS. Simulation results on the IEEE 33-bus distribution
system coupled with a 25-node transportation network
demonstrate that the proposed approach identifies two
optimal FCS locations with 9 and 7 chargers, resulting in a
net daily profit of $6,147 for the investor, while maintaining
feasible network operation. The derived locational marginal
prices vary spatially and temporally, directly influencing
investment decisions. Sensitivity analysis indicates that
higher electricity selling prices shift optimal locations and
increase investor profit.

In this study, the power demand at each candidate location
for establishing FCSs was predefined. The selection or non-
selection of a candidate site does not affect the charging
demand of other stations. However, in reality, part of the
charging demand from nearby stations may shift to the newly
established ones. The dynamic behavior of charging demand
among stations can play a significant role in the investor’s
siting decisions as well as in satisfying the distribution
network constraints. However, considering this dynamic
behavior would make the cost of purchased energy from the
DSO nonlinear, preventing the use of conventional solvers
such as CPLEX to solve the problem.
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