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Abstract— This paper presents a bi-level optimization model 

for the siting and sizing of electric vehicle fast charging stations 

(FCSs), considering the constraints of the power distribution 

network. In the presented method, queuing theory and a user 

equilibrium-based traffic assignment model are used to 

determine the size of FCSs. The upper-level problem aims to 

maximize the profit of the FCS owner by determining optimal 

locations and capacities of FCSs. The lower-level problem 

minimizes the operational cost of the distribution network while 

considering power flow constraints and EV charging demands. 

The bi-level model is transformed into a single-level 

mathematical program using the Karush-Kuhn-Tucker (KKT) 

primal-dual optimality conditions of the lower-level problem 

due to the linearity of the LL problem. Simulation results on the 

IEEE 33-bus distribution system and a 25-node transportation 

network show that two FCSs are optimally installed at buses 25 

and 32 with 9 and 7 chargers, respectively, yielding a daily profit 

of approximately $6,147 for the investor. Sensitivity analysis 

demonstrates that higher electricity selling prices lead to 

increased profitability and expansion of charging 

infrastructure, highlighting the effectiveness of the proposed 

framework in capturing the economic interaction between the 

DSO and private investors. 

 

Keywords: Bi-level Optimization, Karush-Kuhn-Tucker, 

Queuing Theory, Sizing of Electric Vehicle Charging Stations,  

Locational Marginal Prices 

 

 

 

1. NOMENCLATURE 

2. Sets and indices 

r 3. Travel origin index 

u 4. Travel destination index 

k 5. The path index for moving from origin r to 

destination u 

6. Parameters 

fra 7. Traffic load of the road a 

ta0 8. Travel time on the road without traffic 

𝑎𝐾
𝐹  9. Fixed cost in bus k 

𝑎𝐾
𝐿𝑆 10. Cost dependent on location and size of charging 

station on bus k 

𝑎𝐶𝐻𝐹  11. Cost of equipment required to build an FCS 

C 12. Overall daily charging demand (times/day). 

σ 13. percentage of EVs that are recharged at home by 

using standard wall outlets (%) 

β 14. Choosing the ratio of charging posts 
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trip
tf  
15. Trip ratio in time t 

fk,t 16. Traffic flow captured by the kth FCS 

μ 17. Mean service rate of FCS (vehicles/hour)    

qru 18. Total traffic load between source r and destination 

u 

ε 19. Interest rate 

FCSn
 

20. capital recovery factor 

pFCS
 21. Nominal charging power of the fast charging 

facility. 

variables 

fpr,u

,k 

22. Traffic load of the kth path between origin r and 

destination u 

ta 23. Travel time on the road a (hour) 

Fnk,t 24. The total traffic load of the arcs ending at node k 

δr,u,k, a 25. Binary variable indicating the existence of arc a on 

the kth path for moving from origin r to destination 

u 

k ,t
 

26. Occupation rate of fast charging facilities of the 

kth FCS in time t (%) 

RH
k  

27. Occupation rate of fast charging facilities of the 

kth FCS in the rush hour  (%) 

Zk 28. Number of charges at the kth station 

RH
k  

29. The number of vehicles entering the candidate 

charging station during peak hours (vehicles) 

RH
kW

 
30. Average waiting time for the charging service in 

the th FCS during the rush hour (hour)  

FCS
k ,tP

 
31. Charging power of the kth FCS in time t (kW) 

zk 32. Size of the kth FCS 

RFCS 33. The revenue of the FCS investor  )$( 

CostFCS 34. The cost of the FCS investor  )$( 

Cinv 35. The investment cost of FCS )$( 

Ui 36. Binary variable representing the establishment of 

an FCS at bus i 

,Cost
up
i t  

37. The cost  of buying energy from the upstream 

network for the FCS investor  )$( 

,g tP
 

38. Active power generation of generator g in time t 

(kW) 

,
grid

i tP

 

39. 
Active power purchased from the electrical grid at 

bus i, in time t (kW)
 

,
LS

i tP

 

40. 
The amount of load shedding at bus i  (kW)

 

,
flow

l tP

 

41. 
Active power flow through line l at time t (kW)

 

,i t

 

42. 
Voltage angle

 
at bus i, in time t

 

Acronyms 

DSO 43. distribution system operator 

EV 44. Electric Vehicles 

FCS 45. Fast-charging stations 

KKT 46. Karush-Kuhn-Tucker 

LL 47. Lower level 

OPF 48. Optimal Power Flow 

OD 49. Origin Destination 

PSO 50. Particle Swarm Optimization 

UL 51. Upper Level 

 

I.  INTRODUCTION: 

he growing adoption of Electric Vehicles (EVs) 

highlights the urgent need to expand fast-charging 

infrastructure. Fast-charging stations  (FCS) significantly 

reduce charging time, enhance travel convenience, and 

promote EV acceptance. However, their deployment requires 

careful planning due to high investment costs and grid 

capacity limits. Strategic integration of fast-charging stations 

within transportation and power networks ensures efficient 

energy delivery and supports the transition toward 

sustainable, low-emission transportation. 

Recent studies have proposed various optimization 

approaches to address the complex problem of locating and 

sizing FCSs for electric vehicles.  A bi-level optimization 

model is proposed in [1]  to determine optimal fast-charging 

station locations in a metropolitan network, minimizing travel 

time and infrastructure costs while considering vehicle types 

and traffic congestion.  Reference [2]  uses a genetic algorithm 

to identify profit-maximizing locations and designs for fast 

EV charging stations, considering stochastic charging 

demand, user-equilibrium traffic, and the interdependence 

between congestion, station queues, and price-sensitive 

charging behavior . Reference [3]  develops an optimization 

strategy for allocating FCSs for electric vehicles. The 

proposed mixed-integer programming model minimizes 

investment and operating costs while considering PV-

integrated carports and battery energy storage systems as 

alternative planning options. 

When the distribution system operator (DSO) owns and 

operates the FCSs, the planning problem becomes integrated, 

combining investment and operational decisions under 

network constraints.  Reference [4]  presents a multi-objective 

model to determine the optimal placement and sizing of FCSs 

along intra-city corridors, integrating  transportation and 

electrical networks. Reference [5] addresses the optimization 

of FCS size and location, taking into account investment, 

T 
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operation, and maintenance costs, power system losses, and 

reliability costs. A Particle Swarm Optimization approach is 

employed to identify the optimal station sizes and locations. 

In [6], a strategic framework for ultra-fast EV charging 

station planning is proposed, optimizing locations and 

charger numbers using the Voltage Stability Index and Harris 

Hawk Optimization to minimize total costs. The model also 

accounts for uncertainties in charging behavior and electricity 

prices via the 2m-Point Estimate Method. In [7], an optimal 

allocation and sizing method for EV charging stations in the 

Allahabad distribution network is proposed. The approach 

minimizes installation costs while enhancing grid 

performance based on voltage profile and real and reactive 

power loss indices. The nonlinear mixed-integer problem is 

solved using an improved metaheuristic algorithm, the 

Balanced Mayfly Algorithm. In [8], a multi-objective 

optimization approach is presented for the optimal placement 

of FCSs, DGs, and shunt capacitors. A Pareto-based hybrid 

method combining Grey Wolf Optimizer and Particle Swarm 

Optimization is employed to minimize multiple objectives in 

a 118-bus radial distribution system. 

Several studies have formulated the siting and sizing of 

FCSs as bi-level optimization problems to capture the 

interaction between DSO, FCS investors, and EV users.  In 

[9], a bi-level multi-objective model is developed for EV 

charging station location planning, simultaneously 

considering user preferences and waiting times. The upper 

level optimizes station locations and capacities to minimize 

total cost and service delay, while the lower level allocates 

users to stations to minimize travel time. In [10], a bi-level 

optimization model for fast charging station allocation is 

proposed. The upper layer maximizes investor profits, while 

the lower layer coordinates the expected efficiency of the 

charging service supply. In [11], an online vehicle-charging 

assignment model is integrated into the fast-charging station 

location problem for dynamic ridesharing with electric 

vehicles. The bi-level optimization aims to minimize the 

fleet’s total daily charging time. In [12], a bi-level 

optimization model is developed for the location and sizing 

of EV charging stations by jointly considering transportation 

and energy demands. The lower level incorporates user 

equilibrium traffic conditions as constraints, while the upper 

level optimizes the location, capacity, and pricing of new 

stations alongside existing ones.  In [13], a bi-level 

programming model is proposed to determine the optimal 

locations of EV charging stations, aiming to minimize 

drivers’ range anxiety. In [14], a strategic charging-behavior-

aware model is formulated as a bi-level mixed-integer 

program. The lower level models drivers’ charging responses 

using a network equilibrium approach, while the upper level 

optimizes charging station location and sizing to minimize 

overall traffic time and investment costs. In [15], a bi-level 

optimization model addresses the strategic location and sizing 

of EV charging stations under stochastic vehicle flows and 

charging times. The upper level minimizes infrastructure 

costs while ensuring probabilistic service requirements on 

users’ waiting times, considering route choice responses. In 

[16], a bi-level planning model for EV charging stations is 

proposed, incorporating traffic conditions and energy 

consumption per unit distance. The lower level represents 

users’ charging decisions, while the upper level optimizes 

station location and capacity. The model is solved using the 

Improved Whale Optimization Algorithm and Voronoi 

diagrams. In [17], a bi-level optimization model considers the 

impact of non-system-optimal driver behavior on EV 

charging station capacity. The upper level addresses the 

provider’s station location decisions, while the lower level 

models drivers’ selfish charging choices to minimize stops.  

Reference   [18]  proposes a bi-level model where the lower 

level minimizes daily operating costs through bus scheduling 

and charging optimization, while the upper level designs 

charging stations using a tabu search algorithm 

Several other studies have focused on bi-level optimization 

models that primarily consider the transportation network 

perspective, emphasizing traffic flow, user behavior, and 

route planning in EV charging station deployment.  In [19], a 

bi-level optimization approach using Particle Swarm 

Optimization is proposed to determine optimal EV charging 

station locations while minimizing losses and operating costs. 

An integrated EV charging planning algorithm manages 

connections to avoid peak load issues and severe voltage 

drops. In [20], a MILP-based coordinated planning method is 

proposed for coupled power and transportation networks, 

optimizing new road deployment, EV charging station 

placement along these roads, and power network expansion 

to support the stations. In [21], a bi-level planning model 

considers both investor costs and user satisfaction. The upper 

level minimizes construction costs and network losses using 

an improved Particle Swarm Optimization, while the lower 

level evaluates user satisfaction by minimizing travel time 

and expenses, considering queue times and distances through 

Dijkstra’s algorithm and queuing theory. In [22], a bi-level 

programming model determines optimal EV charging station 

allocation in the presence of wind turbines. The upper level 

maximizes station profit, while the lower level minimizes 

power losses using available sources and dynamic feeder 

reconfiguration. The impacts of cryptocurrency miners and 

demand-side management are also considered. In [23], a 

combined road transport and electric distribution network 

model is proposed for strategic EV charging station 

deployment. A bi-level optimization approach minimizes 

user travel costs, power losses, and voltage deviations, 

employing  PSO-DS for station placement, convex 

optimization for traffic equilibrium, and AC OPF for grid 

operation.  In [24], a bi-level EV charging station planning 

model considers spatiotemporal load distribution under 

uncertainty. The lower level predicts charging demand using 

OD matrices, dynamic Dijkstra routing, and LHS, while the 

upper level minimizes station planning costs and user 

behavior, and also accounts for distribution operation costs 

and emissions from uncertain renewables. In [25], a bi-level 

planning model for EV charging stations in coupled 

distribution-transportation networks is proposed to enhance 

post-fault security. The upper level optimizes station 

locations and capacities, while the lower level designs EV 

charging routes to minimize overall travel costs.  

Investment in FCSs is typically made by private investors 

whose economic objectives often differ from those of the 

DSO. Although many studies have addressed the siting and 

sizing of FCS, most focus on either transportation behavior 

or distribution network operation, and do not capture the 

economic interaction between private investors and the DSO, 

especially when electricity prices are determined through 

network-constrained optimal power flow. To address this 

gap, this paper proposes a multi-objective bi-level model that 

jointly determines FCS locations, capacities, and energy 

exchange prices. The main novelties of this study are as 

follows: 
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1- The integration of FCS private investor and DSO 

objectives within a bi-level framework. 

2- the simultaneous optimization of FCS location, sizing, 

and electricity exchange pricing under network constraints, 

with the bi-level model transformed into a single-level 

formulation using Karush-Kuhn-Tucker (KKT) conditions. 

The rest of this paper is organized as follows: the bi-level 

model for determining the location and capacity of FCSs and 

the DC optimal power flow of the distribution network is 

presented in Section II. Simulation results and sensitivity 

analysis are presented in Section III, and Section IV 

concludes the paper results and future works. 

 

II. BI-LEVEL OPTIMIZATION APPROACH 

In this paper, a two-level model is proposed to represent the 

interaction between the charging station owner and the 

distribution network operator. Before implementing the two-

level model, the charging demand of each candidate station is 

first determined by considering the user equilibrium-based 

traffic assignment model and queuing theory. In the two-level 

model and at the high level, by determining the energy 

purchase price from the distribution network at the location 

of each FCS and maximizing the profit of the charging station 

owner, the locations of the charging stations are determined. 

By determining the locations of the charging stations and 

adding the electric power demand of these stations to the 

distribution network, and to minimize the cost of energy 

production for the distribution network operator, the energy 

sales price at each busbar is determined. This price will be the 

same as the energy sales price to the charging stations 

installed on the same busbar. The energy sales price to the 

charging stations is transferred to the high-level problem as a 

known parameter, and this process will continue until the 

final answer is reached.  This model is shown in Fig. 1.  The 

user equilibrium-based traffic assignment model, the queue 

theory, and the UL and LL problems are formulated below. 

 

A. The User Equilibrium-based Traffic Assignment Model 

In the proposed method, traffic information is used to 

simulate the behavior of electric vehicles and estimate 

charging demand. However, raw traffic flow data cannot be 

directly used in the planning of charging stations. As a result, 

daily origin-destination data are used to generate traffic 

flows. To obtain these data, an optimal system allocation 

TABLE I 

 Comparative Analysis of Different Articles with the Proposed Model 

Ref 

number 
Objective function 

Decision 

Variables 
Traffic model 

Optim 

model 

Stakeholders 

Considered 

Problem 

Focus 
Methode of optimization 

  

L
o

catio
n
 

S
ize 

P
rice 

 

B
i-lev

el 

sin
g

le-lev
el 

FCS 

owner 
DSO 

electrical 

T
ran

sp
o

rt 

 

[1] 

minimizing travel 

time and 

infrastructure costs 
✓ - - 

re-routing behaviours 

of travellers 
✓ - ✓ - - ✓ cross-entropy method 

[2] Maximizing profit ✓ - - 
user-equilibrium 

traffic 
- ✓ ✓ - - ✓ GA 

[4] 

maximizing 

the traffic flow 

coverage 

✓ ✓ - 

Driving Range-Based 

Traffic Flow 

Capturing Model 

- ✓ - ✓ ✓ ✓ improved PSO 

[5] 
Minimizing total 

costs 
✓ ✓  simple - ✓ - ✓ ✓ ✓ PSO 

[6] minimize total costs ✓ ✓  simple - ✓ - ✓ ✓ ✓ 
Harris Hawk 

Optimization 

[9] minimize total costs ✓ ✓ - simple ✓ - - ✓ ✓ ✓  

[10] 
maximizes investor 

profits 
✓ ✓ - `simple ✓ - ✓ - ✓ ✓ KKT trans 

[11] 
minimize the fleet’s 

total charging time 
✓ ✓ - 

online vehicle-

charging assignment 
✓ - ✓ - - ✓ 

A surrogate-assisted 

optimi approach 

[12] 
minimizes 

infrastructure costs 
✓ ✓ - 

User Equilibrium 

traffic assignment 
✓ - ✓ - ✓ - - 

[14] 

minimize overall 

traffic time and 

investment costs 

✓ ✓ - 
User Equilibrium 

traffic assignment 
✓ - ✓ - - ✓ Descent algorithm 

[18] 
Minimizing 

installation costs 
- ✓ - simple ✓ - ✓ - - ✓ 

tailored column 

generation-based 

heuristic algorithm 

[19] 
minimizing losses 

and operating costs 
✓ - - - ✓ - - ✓ ✓ - PSO 

[23] 
minimizes user travel 

costs, power losses, 
✓ ✓ - traffic equilibrium ✓ - - ✓ ✓ - PSO 

Prop 

model 

maximizes investor 

profits 
✓ ✓ ✓ 

user-equilibrium 

traffic +Queing 

theory 

✓ - ✓ ✓ ✓ ✓ KKT trans 
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model is used to generate and allocate traffic flows on each 

route of the transportation network [26]. The objective of the 

optimal system allocation model is to achieve the minimum 

travel cost, according to equations (1a) to (1b). 

 

     (1a) min .a a

a

fr t
 

(1b) , , ,
,

r u k r u

k

r ufp q  =
 

(1c) , ,
, ,0

r u k
r u kfp   

 

(1d) , , , , ,
, ,.

a r u k r u k a

r u k

r u kfr fp    =
 

     (1e) 
0 1

v

a
a a

a

fr
t t b

c

  
 = +  
    

 

Equation (1a) is the objective function of the problem, 

which represents the minimization of the travel cost. Equation 

(1b) guarantees the principle of network flow conservation. 

This relation means that the sum of the flow of all paths 

between each origin-destination is equal to the travel demand 

of that origin and destination. In this relation, the condition of 

non-negativity of the traffic flow on the kth path between 

origin r and destination u is also considered. Equation (1d) 

indicates that the traffic flow on road a is equal to the sum of 

the flows on all paths that include road a. The travel time on 

road a, given the accumulated flow on this road, is shown in 

(1e).  

 

B. Capacity of Candidate FCSs Based on Queueing Theory 

Queuing theory is often used to mathematically analyze the 

outcome of random arrivals of customers to receive service 

from the system. After obtaining the equilibrium traffic flow 

of each route, the random movement of vehicles and the 

capacity of charging stations are analyzed using queuing 

theory. The charging station service system is considered an 

M/M/S queue system. Queue service models are represented 

by the abbreviation (A/B/C), where A represents the 

distribution between two consecutive arrivals. Since the 

arrival time of each vehicle at the charging station is a random 

variable, in this paper, the arrivals of these vehicles are 

considered as a Poisson distribution. The second term, B, 

represents the distribution of the service duration, which is 

assumed to follow a uniform distribution, and the third term 

represents the number of service providers (chargers at a 

station). 

One of the important parameters in the Poisson process is 

its mean value. It is assumed that electric vehicles have a 

similar driving pattern to conventional vehicles and that the 

average arrival rate of vehicles at each FCS is proportional to 

the traffic flow attracted by that FCS. Thus, the mean arrival 

rate of EVs in the kth FCS at time t can be calculated as: 

 

,

,

,

(1 )(1 ) ,
trip

k tt
k t trip

t k t

t k

ff
C k t

f f
  = − −  

 
 

(2a) 

 

The capacity of charging stations can be calculated as a 

nonlinear integer programming model, assuming that qμ is 

independent of the vehicle arrival rate, based on a Poisson 

process and an exponential distribution of the service time of 

each device according to the M/M/S queue model. Here, 

M/M/S represents a queue model with identical servers, 

where arrival is determined by a Poisson process and service 

time follows a negative exponential distribution [27]: 

 

52. (3a) : min kObj z  

53. (3b)  ,maxRH

k k t =  

54. (3c) 
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kW W k   

55. (3d) 
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57. (3f) 

RH
RH k
k

kz





=  

 

The objective function shown in (3a) is to minimize the 

number of fast charging nozzles required in the FCS. 

Equation (3c) shows that the average waiting time for 

charging during peak traffic hours should be within a 

predefined range. Equation (3d) explains how to calculate the 

waiting time in the queue theory. The probability that there 

are no vehicles under charging service in the FCS is 

represented by π0,k. By increasing the number of charging 

devices, the waiting time in the queue can be reduced. In 

general, proper charging service and service facilitation can 

significantly increase the penetration rate of electric vehicles. 

However, on the other hand, increasing the number of 

charging devices increases the investment in the project, 

which is not economically feasible. Therefore, in order to 

optimally install charging stations, a criterion is used to 

consider the tolerance threshold of wallowed customers for 

charging at each charging station. In this way, if the 

customer's waiting time exceeds a certain time, the customer 

will leave the charging station. Since obtaining the inverse 

functions and the direct solution of the relationship is a 

complex task, a counting method is used to solve it. In this 

method, an initial value for the number of charging devices is 

assigned to the candidate locations of charging stations 

according to the maximum λk,t in the time periods. In each 

iteration, one unit is added to the number of charging devices, 

Obj: maximizing FCS owner profit

Obj: Minimizing the  DSO operating costs 

Location / Size 

of FCSs

Energy sales 

price to FCS

Traffic flow in the 

transportation network

Capacity of FCSs based on 

queueing theory

 
Fig. 1: The prposed bi-level model 
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and WRH is calculated, and its value is compared with Wallowed. 

This continues until the average waiting time for charging is 

less than a certain value. The obtained value Zk will be the 

economic number of charging devices. Once the size of each 

FCS is obtained, the total charging demand at each time can 

be calculated according to (4a) and (4b). 

 

58. (4a) 
FCS FCS

k ,t k ,t kP .z .p k,t=   

59. (4b) 
k ,t

k ,t
k

k ,t
z .


 = 


 

 

C. Upper-Level Problem 

The UL problem objective is to determine the location and 

capacity of FCS installations, aiming to maximize the profits 

of the private owner.  
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64. (5e) 
up

i i,t iU .bigM Cost U .bigM−    

65. (5f) ( )1
up fcs
i,t i i,t i,tCost U .bigM .P − +  

66. (5g) ( )1
up fcs
i,t i i,t i,tCost U .bigM .P − − +  

 

According to (5a), the objective function of the problem is 

to maximize the profit of the private owner, which includes 

the income from selling energy to electric vehicles, the cost 

of purchasing energy from the distribution network, and the 

cost of establishing FCSs, which are given in (5b) – (5c), 

respectively.  According to (5e)– (5g), if an FCS is 

established, the cost of purchasing energy from the 

distribution network will be obtained by multiplying the 

purchased power by the hourly price of energy in the relevant 

bus. 

It should be noted that the energy price per bus is the dual 

variable related to the constraint of equality of generated and 

consumed power per bus, which is obtained from the low-

level problem. 

 

D.Lower-Level Problem 
The lower-level problem aims to minimize the energy 

production costs for the distribution network operator. For 

this purpose, DC optimal Power flow equations have been 

used, which are expressed in (6a)–(6g).  
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The primal set of variables for each LL problem is 

1

grid LS
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variables is
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The objective function of the low-level problem, which is 

to minimize the operating costs of the distribution network, is 

shown in (6a).   This cost includes DG's energy production 

costs, the cost of purchasing energy from the upstream grid, 

and the load shedding cost.   The equation  (6b) ensures 

equality of generation and consumption power on each bus. 

The DC load flow is expressed in (6c). 

The minimum and maximum power passing through each 

line is shown in (6d). The equation  (6e) indicates that the 

distribution network is connected to the upstream grid via Bus 

1. The network only receives energy from the upstream grid, 

and the possibility of selling energy back is not considered. 

The minimum and maximum generator capacities, as well as 

the curtailed load, are specified in the (6f)-(6g). 

It is worth noting that the dual variable of each constraint 

is written in the same equation.  

 

E. Transforming the Bi-Level Model to a Single-Level 

If the LL problem is linear and convex, the bi-level model 

can be transformed into a single-level model using the KKT 

conditions, which introduce inherently non-linear 

complementary constraints. Since the proposed model’s LL 

problem is linear and convex, the KKT conditions are applied 

to convert it into a single-level problem. This single-level 

linear optimization problem, known as a Mathematical 

Program with Equilibrium Constraints (MPEC), can then be 

solved using solvers such as CPLEX. 
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Eq. (7a) shows that the MPEC model objective function is 

the same as the UL problem function.  Constraint (7b) 

contains the UL constraints and the equality constraints 

included in the LL problems. Equalities (7c)–(7g) and the 

complementarity conditions (7h)–(7p) are the KKT 

optimality conditions of the LL problems. 

 

F. MPEC Linearization 

The MPEC single-level model is a non-linear problem 

because of complementary constraints, in (7h)–(7p). Because 

the presence of non-linear complementary constraints makes 

the obtained single-level model non-linear, the suggested 

model is linearized using a technique based on auxiliary 

binary variables and suitably large integers. For example, 

linearization of 0 ⩽ a ⊥ b ⩾ 0 is (8): [28] 

( )

 

0 .

0 1

0,1

.

a U M

b U M

U

  


  −




 (8) 

 

Note that the variables of the resulting MILP are those 

included in the set, as well as the auxiliary binary variables 

used for the linearization of the complementarity conditions. 

The framework of the proposed model as MPEC is illustrated 

in Fig. 2.  

 

III. CASE STUDY 

To implement the proposed concepts, the IEEE 33-bus 

system [29] (Fig. 3) and the transportation network presented 

in [30] (Fig. 4) have been used. The transportation network 

includes 24 traffic nodes and 21 Sioux Falls routes. This 

network consists of 76 paths, 24 nodes, and 552 origin-

destination pairs. The loads at various buses of the 

distribution network follow a 24-hour load profile as shown 

in Fig. 5. The network operates at a voltage level of 12.66 kV 

and is fed from the substation located at bus 1.  The maximum 

power passing through the lines is assumed to be 3000  kW. 

Additional information about this network can be found in 

[30]. Candidate locations for installing FCS and the 

investment costs associated with each location are provided 

in Table I.  

MPEC 

Optimal siting /sizing of FCSs 

Maximizing the profit of FCS invester (UL objective 

function) 

Subject to: 

Upper-level constraint 

lower level constraint 

Optimization constraint of KKT 

complementary constraint of KKT 

Fig. 2: The framework of the proposed model as MPEC 
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Fig. 3: IEEE 33-bus electrical network 
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Considering the candidate locations for installing FCSs and 

using the user equilibrium-based Traffic assignment and 

queuing theory models, the power demand of each candidate 

FCS is shown in Fig. 6.    The electricity selling price to 

electric vehicles, which is one of the key factors influencing 

the charging station owner’s decision, is also shown in Fig. 

7  .Other parameters required to implement the model are also 

given in the Table  II. 
TABLE II 

Settings of Some Crucial Parameters  

value parameter value parameter 

10 maxZ 6 minZ 

5 FCSn 5 min allowedW 

2.5 $/kwh LSC 10% ε 

  1.35 $/kwh sellB 

 
TABLE III 

 Summary of Simulation Results 

value parameter 

[15,18] Optimal installation location 

[9,7] Charger number 

6,147 $ FCS Owner's profit 

139,255 $ Investment cost 

2,183,639 $ FCS cost 

2,329,041 $ FCS revenue 

 

A. Simulation and results analysis 

The proposed MILP bi-level model was implemented in the 

GAMS software, and with the CPLEX solver, the results of 

which are given in Table III.  

Analyzing the results, the FCS owner will establish two 

FCS at traffic nodes 15 and 18 (25 and 32 of the electrical 

network) with 9 and 7 chargers, respectively.   By establishing 

these two stations, the station owner will earn a profit of 

$6,174, of which 139,255 $ will be spent on establishing the 

station and $2,183,369 on purchasing energy from the 

distribution network. There will also be an income of 

$2,329,041 from selling energy to electric vehicles. 

 

 
Fig. 7: Price of purchasing energy from the upstream network during the 

day 

 

In this case, the cost to the DSO is 105,934,300 $. In this 

case, the cost of generating energy by DGs, the cost of 

purchasing energy from the upstream network, and the cost 

of LS in one day are 31,496 $, 246,440 $, and 12,293 $, 

respectively. Given the presence of three DGs in the 

distribution network, the active power generated by each DG 

is shown in Fig. 8 

 
Fig. 6 : FCS hourly demand 

 
Fig. 4: Sioux Falls transportation network 

TABLE I 

 Construction Costs of FCS 

Candidate 

FCS 

1 2 3 4 5 

location 12a 

(5)b 

3a 

(10)b 

10a 

(20)b 

15a 

(25)b 

18a 

(32)b 

αCHF(104$) 2.35 2.35 2.35 2.35 2.35 

αLS(104$) 1.017 1.068 0.814 0.916 1.017 

αk(104$) 16.3 16.3 16.3 16.3 16.3 

a node number in transportation network 
a node number in electrical network 

 

Fig.5: Load profile 
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Fig. 8: DG active power  

 

Fig. 9 illustrates the temporal and spatial variations of the 

nodal electricity prices across different buses over a 24-hour 

period. As shown, the LMP values are generally low and 

uniform during off-peak hours, indicating balanced power 

flow and low network congestion. However, during hours 

16–19, a significant increase in the LMP is observed at 

several buses (particularly around buses 5 and 20), reflecting 

higher demand and possible local congestion in the 

distribution feeders. These higher nodal prices are directly 

linked to the power balance constraints in the lower-level 

optimization, where dual variables represent the marginal 

cost of supplying an Additional unit of power. These LMPs 

are used as the reference prices for energy transactions 

between the DSO and the FCS owners in the bi-level 

framework. 

 
Fig. 9: nodal energy price 

 
Fig. 10: Load shedding 

 
TABLE IV 

 Optimal Locations and Number of FCSs Under Different 

Electricity Selling Prices  to EV Drivers 

Price 

($/kWh) 
profit 

Bus 

number 

Chargers 

number 

1.35 6,146 25,32 9,7 

1.36 23,398 25,32 9,7 

1.37 40,650 25,32 9,7 

1.38 59,390 5,25,32 6,9,7 

1.39 86,037 5,10,25,32 6,8,9,7 

 

The amount of LS on each bus over 24 hours is also shown 

in Fig. 10.  As illustrated in the figure, during the early hours 

before 8:00, when the network load is relatively low, no load 

shedding occurs. However, as the demand increases after this 

period, certain buses experience load curtailment to maintain 

system stability and prevent overloading conditions. 

 

B. Sensitive analysis: 

To assess the robustness of the proposed model, a 

sensitivity analysis is performed on the electricity selling 

price to EVs, which directly impacts the profitability and, 

consequently, the location and capacity decisions of the 

charging stations. 

As shown in Table IV, the location and number of FCSs 

change with variations in the electricity selling price to 

electric vehicles. At lower prices (1.35–1.37 $/kWh), the 

optimizer selects buses 25 and 32 as the most profitable 

locations, each with 9 and 7 chargers, respectively. In this 

range, the profit gradually increases with the selling price, 

while the optimal sites remain unchanged. 

When the price increases to 1.38 $/kWh, an additional station 

is installed at bus 5, indicating that higher revenues justify 

expanding the charging infrastructure. Finally, at 1.39 $/kWh, 

another station appears at bus 10, leading to a network of four 

charging stations and the highest total profit. 

This trend shows that as the selling price rises, the 

profitability of the investment improves, encouraging the 
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deployment of more FCSs in additional locations across the 

network. 

 

IV. CONCLUSION AND FUTURE WORK 

In this study, a bi-level optimization framework is 

developed for the siting and sizing of fast-charging stations, 

considering the interaction between the distribution system 

operator and the FCS investor. The lower level minimizes 

network operational costs via a DC optimal power flow, 

generating locational marginal prices that are passed to the 

upper level. The upper level maximizes the investor’s profit 

by determining optimal FCS locations and capacities based 

on electricity prices and charging demand, modeled through 

a user-equilibrium traffic assignment and M/M/S queuing 

theory. The model is reformulated as a mixed-integer linear 

program using Karush–Kuhn–Tucker conditions and solved 

in GAMS. Simulation results on the IEEE 33-bus distribution 

system coupled with a 25-node transportation network 

demonstrate that the proposed approach identifies two 

optimal FCS locations with 9 and 7 chargers, resulting in a 

net daily profit of $6,147 for the investor, while maintaining 

feasible network operation. The derived locational marginal 

prices vary spatially and temporally, directly influencing 

investment decisions.  Sensitivity analysis indicates that 

higher electricity selling prices shift optimal locations and 

increase investor profit. 

In this study, the power demand at each candidate location 

for establishing FCSs was predefined. The selection or non-

selection of a candidate site does not affect the charging 

demand of other stations. However, in reality, part of the 

charging demand from nearby stations may shift to the newly 

established ones. The dynamic behavior of charging demand 

among stations can play a significant role in the investor’s 

siting decisions as well as in satisfying the distribution 

network constraints. However, considering this dynamic 

behavior would make the cost of purchased energy from the 

DSO nonlinear, preventing the use of conventional solvers 

such as CPLEX to solve the problem. 
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