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TABLEI
Abstract--The convergence of widespread renewable energy Abbreviations

sources (RES) and Internet of Things (IoT) technologies has Abbreviation Full Term
catalyzed the development of the Energy Internet (El), enabling

: El Energy Internet
advanced energy management paradigms. The El framework
facilitates the integration of numerous distributed generation RES Renewable Energy Sources
units and leverages digital intelligence to enhance energy loT Internet of Things
sharing, optimize grid asset utilization, and bolster overall ESS/BESS (Battery) Energy Storage System
power system security. Concurrently, rapid socio-economic DSM Demand-Side Management
growth has intensified global energy demand, leading to 9
periodic shortages that challenge grid reliability. These scarcity RTP Real-Time Pricing
conditions are predominantly manifested during peak load P2pP Peer-to-Peer
periods of the system. Consequently, a significant body of PV Photovoltaic
re_se_arch is c_iedlcated to peak load shl_ftlng and shavmg to PCS Power Conversion System
mitigate this issue. Nevertheless, few studies have systematically
exploited the full capabilities of the EI framework to achieve this BOP Balance of Plant
critical objective. This research, therefore, aims to develop and MIP Mixed-Integer Programming
propose an El-based optimization problem specifically designed SPM Smart Polygeneration Microgrid
to_sqlv&_a ?he peak load shifting problem with the primary goal of SEB Smart Energy Building
minimizing total system cost. The proposed methodology -
achieves this by optimizing the scheduled charging and PAR Peak-to-Average Ratio

discharging cycles of end-user Energy Storage Systems (ESS).
Within this formulated problem, each prosumer—an entity that
is both a consumer and a potential supplier—participates in a I. INTRODUCTION
localized energy market. The operational cost model must

comprehensively account for the costs of power sourced from HE Modem power systems stand on the brink of a

the conventional grid and local RES, the storage dynamics historic transformation. The rapid increase in energy
within the ESS, and the accurate application of Real-Time demand, growing environmental concerns, and the
Pricing (RTP) signals to all generated and consumed energy. imperative to enhance reliability have created unprecedented

challenges [1]. These challenges necessitate a fundamental
Index Terms- Energy Internet, Energy Storage System, transition from traditional, centralized, and passive
Peak Load Shifting, Prosumer, Real-Time Pricing. generation paradigms toward the utilization of distributed and

renewable resources within an integrated, intelligent system
framework [2-3]. In this context, significant advancements in
the 1oT and renewable energy sources have catalyzed the
emergence of a new paradigm: the El [4-5].
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Within the EI framework, all components of the energy
system—from large-scale generators and microgrids to end-
users and distributed energy storage units—are
interconnected via digital platforms [6]-[7]. This connectivity
enables intelligent, integrated, and real-time management of
energy production, storage, distribution, and consumption
[8]. The primary goals of the El are to increase energy
utilization efficiency, facilitate the widespread and secure
integration of renewables, and ultimately establish a resilient,
sustainable, and efficient energy system [9]-[10]. In this
transformed energy landscape, loT technology, with its
capability for large-scale, real-time data collection,
processing, and exchange, serves as the backbone [11]. One
of the most pressing challenges in contemporary power
systems is the phenomenon of "peak load." Energy shortages,
particularly during peak hours, can occur due to total demand
exceeding available generation capacity, outages of
generation units, or fuel shortages in conventional power
plants [12]. This issue not only threatens grid reliability but
also drastically increases operational costs [13]. In this
regard, the "peak load shifting" strategy is recognized as an
effective solution to alleviate grid stress during peak hours
and enhance system stability [14]-[15].

This research aims to propose a comprehensive framework
within the EI to address the peak load shifting problem. The
proposed model integrates active participation from end-
users (who can act as prosumers), distributed battery energy
storage systems, and renewable sources, while employing a
real-time pricing mechanism. Its objective is to minimize the
total energy cost for consumers and optimize the charging and
discharging scheduling of storage units.

Numerous studies have investigated various strategies for
demand management and peak load shifting, primarily
focusing on Demand-Side Management (DSM), RTP, and the
deployment of BESS. The theoretical foundations and
benefits of DSM have been extensively explored in the
literature [16]-[17]. At the end-user level, studies such as [18]
have focused on reducing energy consumption and
prioritizing power scheduling to achieve load shifting. Ref.
[19] has integrated residential electricity management with
solar power generation units. In [20], the use of smart meters
and small-scale storage units in homes encouraged users to
manage their energy consumption. The development of
intelligent controllers based on neural networks for
coordinating distributed energy resources and household
appliances represents a further step in optimizing building
energy use [21].

Dynamic price signals are recognized as a key driver for
modifying consumer behavior [22]. Research [23] introduced
an energy system based on real-time pricing for the automatic
adjustment of user consumption. Study [24] also integrated
smart grids and electric vehicles using optimization models
to reduce grid operational costs. Realistic demand response
models have been developed for effective market interaction
[25-26].

The use of BESS has also received significant attention.
This includes BESS scheduling in competitive markets [27]
and power management in grid-connected systems with PV
and batteries [28]. For instance, [29] utilized BESS to store
energy during low-load conditions and supply power during
peak demand, thereby improving grid reliability. In [30], a

mathematical model for BESS was presented that can smooth
load variations. Considerations related to battery lifecycle
characteristics have also been addressed in the optimization
of isolated power systems [31]. Study [32] further
demonstrated how BESS can maximize profit for its owners
by storing energy during low-price periods and selling it
when prices are high.

Various optimization techniques, including Artificial
Intelligence [33], Evolutionary Algorithms [34-35], as well
as Robust [36] and Stochastic [37-38] approaches, have been
employed to manage uncertainty in power systems. These
methods provide a solid foundation for developing energy
management models in complex environments. Furthermore,
concepts such as Networked Microgrids [39] and business
models for microgrid aggregators [40] have opened new
horizons for optimized energy management .As evident from
the literature review, a significant research gap exists in the
simultaneous integration of these three strategies (DSM,
RTP, BESS) within a unified, decentralized EI framework.
Most studies have focused on only one or two aspects, often
overlooking the active and bidirectional role of end-users in
a dynamic energy market. By addressing this gap, this paper
proposes a comprehensive optimization problem where end-
users can trade energy with one another and the grid within
an intelligent platform influenced by real-time price signals.

While the existing body of work provides robust
foundations in DSM, RTP-based mechanisms, and BESS
scheduling, a critical synthesis within a fully decentralized El
framework is lacking. Studies such as [19] and [21] optimize
building-level energy use with local RES but do not integrate
a dynamic P2P market. Research like [27] and [32] focuses
on BESS arbitrage in wholesale markets, often neglecting the
proactive role of prosumers at the distribution level.
Furthermore, models incorporating RTP [23]-[24] typically
treat consumers as price-takers rather than proactive traders.
This paper bridges these gaps by proposing a holistic
optimization model that simultaneously integrates: (1) a
prosumer-centric P2P energy market, (2) RTP-driven DSM,
and (3) coordinated BESS scheduling—all within a unified
El architecture. The proposed formulation distinctively
models the complete cost structure for prosumers (grid
purchase, RES generation, ESS capital/maintenance). It
enforces operational constraints based on real-time market
signals, enabling a more realistic assessment of peak shaving
and cost-saving potentials.

To validate the proposed optimization problem, a series of
numerical simulations was conducted. The results
demonstrate a significant reduction in the system's peak-to-
average ratio, confirming the method's efficacy in flattening
the load profile. Furthermore, the proposed energy trading
mechanism among prosumers results in a measurable
decrease in their aggregate electricity costs, while also
enhancing the utilization rate of distributed renewable energy
within the network.

The structure of this paper is as follows: Following the
introduction, Section 2 provides a literature review and a
precise problem statement. Section 3 is dedicated to detailing
the problem formulation and the mathematical model. The
simulation environment and obtained results are presented
and analyzed in Section 4. Finally, Section 5 offers
conclusions and suggestions for future research.
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Il. PROBLEM FORMULATION & MATHEMATICAL MODEL

The proposed EI framework is illustrated in Fig. 1. In this
model, energy is conceptualized as a tradable commodity
whose price is dynamically determined by real-time market
demand. This establishes a direct correlation where peak
demand periods correspond to the highest energy prices,
whereas the lowest prices occur during off-peak periods.
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Fig 1. The EI framework

Within the EI network, user demand is accurately
quantified through smart metering infrastructure, with this
data transmitted to a central control center. This system
enables a more realistic and granular representation of load
patterns. The control center is then responsible for
dispatching energy based on the aggregated requested load.

A key feature of this framework is its bidirectional
communication capability. The control center's dispatch
logic, detailed in Fig. 2, moves beyond simple price
thresholds to incorporate both economic and grid-stability
signals.

Fig. 2(a) illustrates the charging logic. The control center
continuously monitors real-time load L(t) and price RTP(t). A
charging signal is broadcast to prosumers only when two
concurrent conditions are met: (1) The RTP(t) is at or below
a dynamic charging threshold Ten(t), and (2) The grid load L(t)
is below the daily average load L™. This prevents charging
from exacerbating grid stress during periods of low price but

high absolute demand. The primary threshold is T, (t) =
RTPL-Y + yA;_,. To ensure robustness during periods of low
price volatility (e.g., A;_; = 0), a fallback mechanism is
implemented. If A;_, is below a defined minimum (e.g., 5%
of RTP..L ), the system defaults to a secondary threshold
based on a rolling 7-day average RTP, maintaining system
responsiveness.

Fig. 2(b) outlines the discharging logic. Discharge is
triggered when the grid load L(t) exceeds L™ and the RTP(t)
surpasses a dynamic discharging threshold T,(t) =
RTPL-Y + BA;_, , where B >y (e.g., B = 0.8). This ensures
prosumers capitalize on high prices while directly
contributing to peak shaving. Upon receiving the signal,
prosumers schedule energy injection from their BESS, either
to the grid or to other consumers via the P2P market.
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Fig 2. Decision flowcharts for the proposed energy management strategy:
(a) ESS charging mode, (b) ESS discharging mode.

This section presents the mathematical formulation for the
load shifting problem introduced previously. The
investigation focuses on peak load management within the El
framework, incorporating a novel peer-to-peer energy market
among end-users—a distinctive feature that is not
comprehensively addressed in the existing literature.

The proposed model employs a comprehensive, system-

wide approach that integrates the complete generation
portfolio with all consumption nodes. The proposed
formulation includes the base foundation, incorporating the
charging dynamics of energy storage systems from renewable
sources—specifically, wind and PV generation.

Furthermore, the model establishes and analyzes the
synergistic relationship between the Energy Internet
infrastructure and distributed energy storage resources for
managing energy from the main grid, wind turbines, and solar
PV installations. Table Il brings all the parameters needed in
this research.

TABLEII
Simulation Parameters
Parameter Definition
C . The total cost of energy procured from the main grid
grid by all consumers
C Aggregate capital and maintenance cost of consumer-
m owned energy storage systems
C levelized cost of energy from consumer-owned
res renewable generation assets
B A revenue stream from energy arbitrage via storage
store system participation in market operations.
i Index of the day under analysis
t Time index
RT Pi (t ) RTP at hour t of the ith day
RT Pn']i;l Minimum RTP on the previous day
RT Pn:;)(l Maximum RTP on the previous day
A . Maximum RTP variation on the previous day
i-1
V4 Parameter indicating the peak-to-off-peak load ratio
E SIE)?; Maximum capacity of energy storage devices
PF:jCS Unit price of PCS (Power Conversion System)
P u . .
Store Unit price of energy storage
PBUOP Unit price of BOP (Balance of Plant)
P Energy capacity of PCS and BOP
CWind Cost of generated wind energy
C v Cost of generated PV energy
E store Total energy stored in energy storage devices
U Charge/discharge efficiency of energy storage
devices
E The amount of wind energy stored in the energy
wind t storage
E PV Amount of PV energy stored in the energy storage
E grid Amount of grid energy stored in the energy storage
M wind Daily maintenance cost of the wind turbine generator
M Daily maintenance cost per unit area of solar energy
PV equipment
E II_ (t ) Grid energy consumed by users at hour t of the ith day
E Grid energy used by users for charging at hour t of the
ESt ith day
Decision
Variable
S Binary parameter indicating whether a user charges
grid t using grid energy at hour t
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The core objective function is formulated to minimize the
total daily energy cost for all users, expressed as follows:

Minimize C_+C +C_-B_, (1)

It is noteworthy that wind and photovoltaic generation can
be either directly consumed or stored for later use.
Consequently, storage systems are prohibited from grid
charging during peak load intervals to prevent network
congestion.

The complete optimization framework is subject to
constraints defined in equations (2), (5), (6), and (9). The grid
energy cost component is formulated as:

c, = YRTR (i)E (1)
o )
+Y_RTP (i )EL (t)s,,,

The first term represents the cost of energy directly
consumed from the grid, while the second term quantifies the
cost of grid energy used specifically for storage charging.

o . isabinary decision variable that specifies the charging

grid ,t

process from the grid as follows:

1, if RTP (t)<RTP " +y.A -
™ |0, otherwise
The storage system cost is modeled as:
Cm = PPuCS P + Ps:)re 'Eslore + PB:JP P (4)

This encompasses:
e  Power Conversion System (PCS) capital cost
e Energy storage medium cost

e Balance of Plant (BOP) components cost,
where P denotes the power rating (kW) and Estore the
energy capacity (Wh).

The price threshold for peak/off-peak classification is
derived from:

A =RTP'-RTP‘ ©)
Peak conditions identified
RTPR, (t) > RTPmi: + ¥, prohibiting storage charging. The

load are when

parameter ¥ € [O,l] determines the peak load duration.

Renewable energy costs are separated as:

Cres :Cwind +va = Mwind'N +MPV 'SPV (6)
representing operational expenditures for wind (N
turbines) and solar (SPV area) assets.

Storage revenue from energy arbitrage is calculated as:

24

8, = 2 [RTROE,, O.0-5,, O] @
t=1

Where u represents round-trip efficiency.

The total stored energy is constrained by:

store

24
Eslare = Egrid + Z Ewind t + EPV S E ore (8)
t=1

24 N
Estore :ZEés,t +an (Vt)+spv 'npv 'pf 'npc 'Gt
t=1

n=1
9)
with renewable contributions calculated using established
power curve and solar radiation models.
Key differentiators from prior research include:
e Comprehensive cost modeling encompassing all
consumer energy resources
e Explicit incorporation of
generation costs
e Integration of real-time pricing mechanisms within
the Energy Internet architecture
e Advanced storage operational constraints based on
market signals
e Holistic energy balance considering both grid and
renewable sources

renewable energy

I1l. SIMULATION RESULTS

A comprehensive numerical analysis is conducted to
validate the proposed mathematical framework. This section
first details the simulation environment and dataset
generation methodology, followed by a systematic analysis of
the obtained results

The model was validated using operational data from the
Savona Campus microgrid, incorporating smart energy
building and smart polygeneration microgrid infrastructures
with hybrid renewable-storage systems.

Key simulation parameters are summarized in Table I1I.

TABLE Il
Simulation Parameter settings
Parameter Value Unit
Charging/discharging efficiency of
i 85 %
energy storage facilities (p)
Unit price of PCS, P 256 €/kW
Unit price of energy storage, Py, 171 €/kWh
Unit price of BOP, Py, 53 €/kW
Highest previous day RTP, RTP ! 141 €/MWh
Lowest previous day RTP, RTP/ ! 67 €/MWh
Peak identification parameter (y) 0.25,0.5,0.75
Discharge trigger parameter (53) 0.8
Max storage capacity (Emax) 141 kWh
Wind turbine daily maintenance cost 10 €/turbine
(Mwind)
PV daily maintenance cost per unit 05 €/m?
area (Mpy)

A comprehensive numerical analysis is conducted to
validate the proposed mathematical framework. This section
first details the simulation environment and dataset
generation methodology, followed by a systematic study of
the obtained results.
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Fig. 3. Campus layout map and SPM and SEB equipment

A. Performance Analysis

Within the Energy Internet framework, the control center
receives real-time data streams from both consumption nodes
and generation assets to optimize energy dispatch decisions.
Distributed energy storage systems continuously monitor
local demand patterns and renewable generation availability
to support operational planning.
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The simulation employs the following dataset
figurations, derived from the Savona Campus microgrid:

Load Profile: Fig. 4 illustrates the 24-hour load
profile for the end-user community, exhibiting
characteristic diurnal patterns with elevated demand
during daytime operational hours. The profile shows
significantly higher consumption during 06:00-17:00,
coinciding with commercial and industrial activity
periods, while nighttime hours (03:00 and 18:00-
24:00) demonstrate substantially reduced demand. A
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pronounced peak demand of 1,376 kWh occurs at hour
17:00, representing the critical target for load shifting
interventions. This consumption pattern provides
essential baseline data for optimizing storage system
dispatch strategies and evaluating the effectiveness of
peak shaving methodologies within the proposed
Energy Internet framework.

1800

1600 +

1400

kW)

1200 ¢

1000 +

500

Energy demand

600

400

g 0 ponr 18 20
Fig. 4. The energy demand of end-users in 24 hours of one day.

e Renewable Generation (Fig. 5): Combined output
from Smart Polygeneration Microgrid (SPM) and
Smart Energy Building (SEB) assets, featuring time-
varying  generation  profiles influenced by
meteorological conditions.

Renewable Generation (SEM & SPM)
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Fig. 5. Daily renewable energy generations for SPM and SEM

e  Price Signals (Fig. 6): The real-time pricing trajectory
reflects market dynamics, with maximum prices
occurring at hour 11:00 and minimum prices at hour
03:00, corresponding to system demand patterns.

160

RTP [£/MWh)

Hour

Fig. 6. The RTPs of 24 hours of one day in the energy trading market.

For economic analysis, the aggregate daily renewable
generation cost is established at $1,640, based on
infrastructure specifications from reference [13], providing a
baseline for cost-benefit assessment of storage operations.

The proposed optimization problem is formulated as a
Mixed-Integer Programming (MIP) model, which is solved
using the optimization toolbox in MATLAB software. To
analyze the sensitivity of system performance to peak load
identification, parametric studies were conducted for
different values of y, which determines the threshold for
peak/off-peak period classification.

The total system cost demonstrates a decreasing trend
with increasing y values. This relationship emerges because
higher y values narrow the classification window for peak
load periods, thereby expanding the temporal flexibility for
storage charging during lower-cost intervals. Consequently,
the optimization algorithm can leverage extended off-peak
durations to minimize energy procurement costs while
maintaining effective peak shaving capability through
strategic discharge scheduling.

The parameter y directly influences storage operational
patterns by governing the charging schedule, state-of-charge
levels, and discharge timing during peak conditions. This
systematic variation enables the identification of optimal
trade-offs between capital utilization of storage assets and
energy arbitrage benefits.

Fig. 7 illustrates the charge-discharge patterns of energy
storage systems across three y values (0.65, 0.70, 0.75), where
binary states represent discharging (0) and charging (1)
operations. The analysis reveals an inverse relationship
between y values and charging duration, with higher vy
parameters resulting in compressed charging windows. This
occurs because elevated y thresholds classify fewer hours as
peak periods, consequently expanding the operational
flexibility for storage charging during off-peak conditions.
So, Fig. 7 reveals reduced charging durations with increasing
y, effectively shifting peak loads.

Charging Plans of Energy Storage Facilities for Different y Values
(a) Charging Plan for v = 0.65
T T T T T

T T

Charging (1)

Charging State

Discharging (0) -

I I | I | | | I | I I
0 2 4 6 8 10 12 14 16 18 20 22
Hour
(b) Charging Plan for v =0.70
T T T T T

Charging (1)

Charging State

Discharging (0)

0 2 4 6 8 10 12 14 16 18 20 22
Hour

(c) Charging Plan for y =0.75

T T T T T

Charging (1)

Charging State

Discharging (0) |-

I I I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20 22
Hour

Fig. 7. The charging plans of energy storage facilities in 24 hours when
y1=0.65, 0.70, and 0.75, respectively
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The load shifting effectiveness is quantitatively
demonstrated in Fig. 8 for y=0.65. The optimized operational
strategy employs storage discharge during peak hours (10:00-
15:00), successfully reducing the original peak load of 1,376
kWh to 1,406 kWh. Concurrently, strategic charging during
off-peak hours elevates the minimum load from 392 kWh to
819 kWh, effectively flattening the load profile. The
implemented peak shaving strategy achieves a significant
reduction in peak-to-average ratio, with total energy loss
decreasing from 1,376 kWh to 868 kWh, representing a 37%
improvement in load factor efficiency.
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Fig. 8. (a) The best peak load shifting of energy storage in comparison with
the original energy demand and RTP, (b) Economic components of the
problem, (c) Proposed optimization performance summary

This operational paradigm demonstrates how coordinated
storage dispatch within the EI framework enables substantial
load shaping benefits while maintaining system reliability
through optimal energy temporal arbitrage. Fig. 9 shows the
Contribution of various energy resources in this framework.

Erenew

EL

Ees

Fig. 9. Contribution of various energy resources

IVV. ANALYSIS OF UNCERTAINTY AND ROBUSTNESS

The proposed optimization model utilizes forecasted data
for renewable generation (PV and wind) and load. In practical
El deployments, forecast errors are inevitable due to the
stochastic nature of weather and consumption behavior. This
section evaluates the sensitivity of our core algorithm to such
uncertainties and discusses its inherent robustness.

A. Methodology for Sensitivity Analysis

A Monte Carlo simulation framework was established to
quantify the impact of forecasting inaccuracies. The day-
ahead forecasts for PV power (P/;) and wind power (B})

were perturbed with additive Gaussian noise to create realistic
scenarios:

Pictual = pIY + €, €py ~ N(0,0,,)

P‘,f,wtual — p‘;c +e€,, €, ~N(0,0,) (10

where the standard deviations o,, and o, are expressed
as a percentage of the installed capacity (e.g., o = 10%
represents a forecast error with a standard deviation of 10%
of capacity). For each error level (¢ from 5% to 30%), 500
independent  daily scenarios were generated. The
deterministic MIP model (which treats forecasts as perfect)
was solved for each scenario using the actual simulated
generation as input, representing a realistic real-time
operation where forecasts are imperfect.

B. Results and Discussion

The primary performance metric, the Peak-to-Average
Ratio (PAR) reduction, was calculated for each scenario. Fig.
10 summarizes the results, showing the mean PAR reduction
and its 95% confidence interval across all scenarios for each
error level.
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Fig. 10. Robustness analysis: Impact of renewable generation forecast error (standard deviation as % of capacity) on the achieved Peak-to-Average Ratio
(PAR) reduction. Error bars represent the 95% confidence interval over 500 Monte Carlo simulations.

Fig. 10 presents a robustness analysis of the proposed
energy management algorithm under renewable
generation forecast uncertainty. The x-axis represents the
forecast error, expressed as the standard deviation (o)
percentage of installed capacity, while the y-axis shows
the achieved PAR reduction. Each data point corresponds
to the mean result from 500 independent Monte Carlo
simulations, with error bars indicating the 95% confidence
intervals. Three transparent zones define key performance
regions: the high Performance zone (¢ < 10%) in light
green, representing systems with accurate forecasting; the
moderate Performance zone (10% < o < 20%) in light
orange, corresponding to typical day-ahead forecast errors
in real-world grids; and the lower Performance zone (¢ >
20%) in light red. The dashed orange line depicts the linear
degradation trend, with a slope of -0.28% PAR reduction
per 1% increase in forecast error, quantifying the
algorithm's graceful performance decline. The red dotted
line marks the perfect-forecast baseline performance
(18.5% PAR reduction at 6 = 0%). The results demonstrate
the algorithm's graceful degradation characteristic,
maintaining approximately 70% of its optimal efficacy
even at a 20% forecast error level, confirming its practical
suitability for deployment under realistic prediction
inaccuracies.

The key finding is the algorithm's graceful degradation
in performance. With a forecast error () of 20%, the mean
PAR reduction decreases from 18.7% (under perfect
forecast) to 15.3%. This demonstrates that the core logic—
responding to real-time price and load signals—remains
effective even in the presence of significant generation
uncertainty. The strategy does not catastrophically fail
because the BESS dispatch is primarily driven by the
observed RTP and grid load signals, which indirectly

reflect the system's net condition (load minus actual
renewable generation).

C. Practical Implications and Pathways for Enhanced
Robustness

The analysis confirms that the proposed deterministic
model possesses inherent robustness suitable for
environments with moderate forecast uncertainty. For
systems with very high penetration of variable RES (where
o > 25%), the following enhancements are recommended
as future work:

1. Integration of Stochastic  Programming:
Reformulating the problem as a two-stage
stochastic program where the first stage decides
ESS investment/commitment, and the second
stage recourse actions adjust dispatch based on
revealed renewable output.

2. Model Predictive Control (MPC): Implementing
arolling-horizon MPC framework that repeatedly
solves the optimization with updated short-term
forecasts, thereby mitigating the impact of day-
ahead forecast errors.

3. Hybrid Forecasts: Employing advanced
forecasting techniques that blend physical models
with machine learning to reduce the baseline
error ().

The current model provides a strong and
computationally efficient foundation, with the presented
robustness analysis defining its operational envelope.

V. CONCLUSION
This research has developed and validated an Energy
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Internet optimization problem incorporating peer-to-peer
energy markets and distributed storage systems to
effectively address the peak load shifting challenge. The
study establishes a comprehensive mathematical
programming formulation and demonstrates its practical
implementation through optimization-based simulation
using real-world microgrid data.

The numerical results confirm the method's capability
to generate real-time operational decisions that achieve
significant load shaping benefits. Furthermore, the
analysis reveals that transactive energy mechanisms
within the Energy Internet create economic incentives for
end-users to invest in storage assets and renewable
generation, thereby enhancing system-wide flexibility.

Several promising directions emerge for future
research:

e Integration of additional renewable energy
resources with complementary generation
profiles

e Multi-objective  optimization  incorporating
environmental emissions alongside economic
criteria

e Robust and stochastic programming approaches
to address uncertainties in renewable generation
and load demand

¢ Reliability-oriented analysis considering network
losses and system resilience metrics

e Investigation of advanced market mechanisms
for distributed energy resource aggregation

These extensions would further enhance the practical
applicability of the proposed optimization framework in
future power systems with high renewable penetration.
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