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    Abstract--The convergence of widespread renewable energy 

sources (RES) and Internet of Things (IoT) technologies has 

catalyzed the development of the Energy Internet (EI), enabling 

advanced energy management paradigms. The EI framework 

facilitates the integration of numerous distributed generation 

units and leverages digital intelligence to enhance energy 

sharing, optimize grid asset utilization, and bolster overall 

power system security.  Concurrently, rapid socio-economic 

growth has intensified global energy demand, leading to 

periodic shortages that challenge grid reliability. These scarcity 

conditions are predominantly manifested during peak load 

periods  of the system. Consequently, a significant body of 

research is dedicated to peak load shifting and shaving to 

mitigate this issue. Nevertheless, few studies have systematically 

exploited the full capabilities of the EI framework to achieve this 

critical objective.  This research, therefore, aims to develop and 

propose an EI-based optimization problem specifically designed 

to solve the peak load shifting problem with the primary goal of 

minimizing total system cost. The proposed methodology 

achieves this by optimizing the scheduled charging and 

discharging cycles of end-user Energy Storage Systems (ESS). 

Within this formulated problem, each prosumer—an entity that 

is both a consumer and a potential supplier—participates in a 

localized energy market. The operational cost model must 

comprehensively account for the costs of power sourced from 

the conventional grid and local RES, the storage dynamics 

within the ESS, and the accurate application of Real-Time 

Pricing (RTP) signals to all generated and consumed energy. 

 

Index Terms- Energy Internet, Energy Storage System, 

Peak Load Shifting, Prosumer, Real-Time Pricing. 
 

 

 

 

 

TABLE I 
Abbreviations 

Abbreviation Full Term 

EI Energy Internet 

RES Renewable Energy Sources 

IoT Internet of Things 

ESS / BESS (Battery) Energy Storage System 

DSM Demand-Side Management 

RTP Real-Time Pricing 

P2P Peer-to-Peer 

PV Photovoltaic 

PCS Power Conversion System 

BOP Balance of Plant 

MIP Mixed-Integer Programming 

SPM Smart Polygeneration Microgrid 

SEB Smart Energy Building 

PAR Peak-to-Average Ratio 

 

I.  INTRODUCTION 

HE Modern power systems stand on the brink of a 

historic transformation. The rapid increase in energy 

demand, growing environmental concerns, and the 

imperative to enhance reliability have created unprecedented 

challenges [1]. These challenges necessitate a fundamental 

transition from traditional, centralized, and passive 

generation paradigms toward the utilization of distributed and 

renewable resources within an integrated, intelligent system 

framework [2-3]. In this context, significant advancements in 

the IoT and renewable energy sources have catalyzed the 

emergence of a new paradigm: the EI [4-5]. 
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Within the EI framework, all components of the energy 

system—from large-scale generators and microgrids to end-

users and distributed energy storage units—are 

interconnected via digital platforms [6]-[7]. This connectivity 

enables intelligent, integrated, and real-time management of 

energy production, storage, distribution, and consumption 

[8]. The primary goals of the EI are to increase energy 

utilization efficiency, facilitate the widespread and secure 

integration of renewables, and ultimately establish a resilient, 

sustainable, and efficient energy system [9]-[10]. In this 

transformed energy landscape, IoT technology, with its 

capability for large-scale, real-time data collection, 

processing, and exchange, serves as the backbone [11].  One 

of the most pressing challenges in contemporary power 

systems is the phenomenon of "peak load." Energy shortages, 

particularly during peak hours, can occur due to total demand 

exceeding available generation capacity, outages of 

generation units, or fuel shortages in conventional power 

plants [12]. This issue not only threatens grid reliability but 

also drastically increases operational costs [13]. In this 

regard, the "peak load shifting" strategy is recognized as an 

effective solution to alleviate grid stress during peak hours 

and enhance system stability [14]-[15]. 

This research aims to propose a comprehensive framework 

within the EI to address the peak load shifting problem. The 

proposed model integrates active participation from end-

users (who can act as prosumers), distributed battery energy 

storage systems, and renewable sources, while employing a 

real-time pricing mechanism. Its objective is to minimize the 

total energy cost for consumers and optimize the charging and 

discharging scheduling of storage units. 

Numerous studies have investigated various strategies for 

demand management and peak load shifting, primarily 

focusing on Demand-Side Management (DSM), RTP, and the 

deployment of BESS.  The theoretical foundations and 

benefits of DSM have been extensively explored in the 

literature [16]-[17]. At the end-user level, studies such as [18] 

have focused on reducing energy consumption and 

prioritizing power scheduling to achieve load shifting. Ref. 

[19] has integrated residential electricity management with 

solar power generation units. In [20], the use of smart meters 

and small-scale storage units in homes encouraged users to 

manage their energy consumption. The development of 

intelligent controllers based on neural networks for 

coordinating distributed energy resources and household 

appliances represents a further step in optimizing building 

energy use [21]. 

Dynamic price signals are recognized as a key driver for 

modifying consumer behavior [22]. Research [23] introduced 

an energy system based on real-time pricing for the automatic 

adjustment of user consumption. Study [24] also integrated 

smart grids and electric vehicles using optimization models 

to reduce grid operational costs. Realistic demand response 

models have been developed for effective market interaction 

[25-26]. 

The use of BESS has also received significant attention. 

This includes BESS scheduling in competitive markets [27] 

and power management in grid-connected systems with PV 

and batteries [28]. For instance, [29] utilized BESS to store 

energy during low-load conditions and supply power during 

peak demand, thereby improving grid reliability. In [30], a 

mathematical model for BESS was presented that can smooth 

load variations. Considerations related to battery lifecycle 

characteristics have also been addressed in the optimization 

of isolated power systems [31]. Study [32] further 

demonstrated how BESS can maximize profit for its owners 

by storing energy during low-price periods and selling it 

when prices are high. 

Various optimization techniques, including Artificial 

Intelligence [33], Evolutionary Algorithms [34-35], as well 

as Robust [36] and Stochastic [37-38] approaches, have been 

employed to manage uncertainty in power systems. These 

methods provide a solid foundation for developing energy 

management models in complex environments. Furthermore, 

concepts such as Networked Microgrids [39] and business 

models for microgrid aggregators [40] have opened new 

horizons for optimized energy management .  As evident from 

the literature review, a significant research gap exists in the 

simultaneous integration of these three strategies (DSM, 

RTP, BESS) within a unified, decentralized EI framework. 

Most studies have focused on only one or two aspects, often 

overlooking the active and bidirectional role of end-users in 

a dynamic energy market. By addressing this gap, this paper 

proposes a comprehensive optimization problem where end-

users can trade energy with one another and the grid within 

an intelligent platform influenced by real-time price signals . 

While the existing body of work provides robust 

foundations in DSM, RTP-based mechanisms, and BESS 

scheduling, a critical synthesis within a fully decentralized EI 

framework is lacking. Studies such as [19] and [21] optimize 

building-level energy use with local RES but do not integrate 

a dynamic P2P market. Research like [27] and [32] focuses 

on BESS arbitrage in wholesale markets, often neglecting the 

proactive role of prosumers at the distribution level. 

Furthermore, models incorporating RTP [23]-[24] typically 

treat consumers as price-takers rather than proactive traders. 

This paper bridges these gaps by proposing a holistic 

optimization model that simultaneously integrates: (1) a 

prosumer-centric P2P energy market, (2) RTP-driven DSM, 

and (3) coordinated BESS scheduling—all within a unified 

EI architecture. The proposed formulation distinctively 

models the complete cost structure for prosumers (grid 

purchase, RES generation, ESS capital/maintenance). It 

enforces operational constraints based on real-time market 

signals, enabling a more realistic assessment of peak shaving 

and cost-saving potentials. 

To validate the proposed optimization problem, a series of 

numerical simulations was conducted. The results 

demonstrate a significant reduction in the system's peak-to-

average ratio, confirming the method's efficacy in flattening 

the load profile. Furthermore, the proposed energy trading 

mechanism among prosumers results in a measurable 

decrease in their aggregate electricity costs, while also 

enhancing the utilization rate of distributed renewable energy 

within the network. 

The structure of this paper is as follows: Following the 

introduction, Section 2 provides a literature review and a 

precise problem statement. Section 3 is dedicated to detailing 

the problem formulation and the mathematical model. The 

simulation environment and obtained results are presented 

and analyzed in Section 4. Finally, Section 5 offers 

conclusions and suggestions for future research. 
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II.  PROBLEM FORMULATION & MATHEMATICAL MODEL 

The proposed EI framework is illustrated in Fig. 1. In this 

model, energy is conceptualized as a tradable commodity 

whose price is dynamically determined by real-time market 

demand. This establishes a direct correlation where peak 

demand periods correspond to the highest energy prices, 

whereas the lowest prices occur during off-peak periods. 

 

 
Fig 1. The EI framework 

 

Within the EI network, user demand is accurately 

quantified through smart metering infrastructure, with this 

data transmitted to a central control center. This system 

enables a more realistic and granular representation of load 

patterns. The control center is then responsible for 

dispatching energy based on the aggregated requested load. 

A key feature of this framework is its bidirectional 

communication capability. The control center's dispatch 

logic, detailed in Fig. 2, moves beyond simple price 

thresholds to incorporate both economic and grid-stability 

signals. 

Fig. 2(a) illustrates the charging logic. The control center 

continuously monitors real-time load L(t) and price RTP(t). A 

charging signal is broadcast to prosumers only when two 

concurrent conditions are met: (1) The RTP(t) is at or below 

a dynamic charging threshold Tch(t), and (2) The grid load L(t) 

is below the daily average load Lˉ. This prevents charging 

from exacerbating grid stress during periods of low price but 

high absolute demand. The primary threshold is 𝑇𝑐ℎ(𝑡) =

𝑅𝑇𝑃𝑚𝑖𝑛
𝑖−1 + 𝛾Δ𝑖−1.  To ensure robustness during periods of low 

price volatility (e.g.,  Δ𝑖−1 ≈ 0), a fallback mechanism is 

implemented.  If  Δ𝑖−1  is below a defined minimum (e.g., 5% 

of  𝑅𝑇𝑃𝑚𝑖𝑛
𝑖−1   ), the system defaults to a secondary threshold 

based on a rolling 7-day average RTP, maintaining system 

responsiveness. 

Fig. 2(b) outlines the discharging logic. Discharge is 

triggered when the grid load  L(t) exceeds Lˉ and the RTP(t) 

surpasses a dynamic discharging threshold 𝑇𝑑𝑖𝑠(𝑡) =

𝑅𝑇𝑃𝑚𝑖𝑛
𝑖−1 + 𝛽Δ𝑖−1 , where 𝛽 > 𝛾 (e.g., 𝛽 = 0.8). This ensures 

prosumers capitalize on high prices while directly 

contributing to peak shaving. Upon receiving the signal, 

prosumers schedule energy injection from their BESS, either 

to the grid or to other consumers via the P2P market. 

 

 
(a) 
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(b) 

Fig 2. Decision flowcharts for the proposed energy management strategy: 

(a) ESS charging mode, (b) ESS discharging mode. 

 

This section presents the mathematical formulation for the 

load shifting problem introduced previously. The 

investigation focuses on peak load management within the EI 

framework, incorporating a novel peer-to-peer energy market 

among end-users—a distinctive feature that is not 

comprehensively addressed in the existing literature. 

The proposed model employs a comprehensive, system-

wide approach that integrates the complete generation 

portfolio with all consumption nodes. The proposed 

formulation includes the base foundation, incorporating the 

charging dynamics of energy storage systems from renewable 

sources—specifically, wind and PV generation. 

Furthermore, the model establishes and analyzes the 

synergistic relationship between the Energy Internet 

infrastructure and distributed energy storage resources for 

managing energy from the main grid, wind turbines, and solar 

PV installations. Table II brings all the parameters needed in 

this research. 
TABLE II 

Simulation Parameters 

Parameter Definition  

gridC  
The total cost of energy procured from the main grid 

by all consumers 

mC  
Aggregate capital and maintenance cost of consumer-

owned energy storage systems 

resC  
levelized cost of energy from consumer-owned 

renewable generation assets 

storeB  
A revenue stream from energy arbitrage via storage 

system participation in market operations. 

i  Index of the day under analysis 

t  Time index 

( )iRTP t  RTP at hour t of the ith day 

1

min

iRTP −
 Minimum RTP on the previous day 

1

max

iRTP −
 Maximum RTP on the previous day 

1i −  Maximum RTP variation on the previous day 

  Parameter indicating the peak-to-off-peak load ratio 

max

storeE  Maximum capacity of energy storage devices 

u

PCSP  Unit price of PCS (Power Conversion System) 

u

StoreP  Unit price of energy storage 

u

BOPP  Unit price of BOP (Balance of Plant) 

P  Energy capacity of PCS and BOP 

windC  Cost of generated wind energy 

pvC  Cost of generated PV energy 

storeE  Total energy stored in energy storage devices 

  
Charge/discharge efficiency of energy storage 

devices 

,wind tE  
The amount of wind energy stored in the energy 

storage 

PVE  Amount of PV energy stored in the energy storage 

gridE  Amount of grid energy stored in the energy storage 

windM  Daily maintenance cost of the wind turbine generator 

PVM  
Daily maintenance cost per unit area of solar energy 

equipment 

( )i

LE t  Grid energy consumed by users at hour t of the ith day 

,ES tE  
Grid energy used by users for charging at hour t of the 

ith  day 

Decision 

Variable 
 

,grid t  
Binary parameter indicating whether a user charges 

using grid energy at hour t 
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The core objective function is formulated to minimize the 

total daily energy cost for all users, expressed as follows: 

Minimize C
grid m res store

C C B+ + −                                       (1) 

It is noteworthy that wind and photovoltaic generation can 

be either directly consumed or stored for later use. 

Consequently, storage systems are prohibited from grid 

charging during peak load intervals to prevent network 

congestion. 

The complete optimization framework is subject to 

constraints defined in equations (2), (5), (6), and (9). The grid 

energy cost component is formulated as: 

( ) ( )

( ) ( )

24

1

24

, ,

1

C .

. .

i

grid i L

t

i

i ES t grid t

t

RTP i E t

RTP i E t 

=

=

=

+





                              (2) 

The first term represents the cost of energy directly 

consumed from the grid, while the second term quantifies the 

cost of grid energy used specifically for storage charging. 

,grid t
  is a binary decision variable that specifies the charging 

process from the grid as follows: 

 

( ) 1

min 1

,

1, .

0,

i

i i

grid t

if RTP t RTP

otherwise




−

−
 + 

=




                 (3) 

The storage system cost is modeled as: 

 

. . .
u u u

m PCS store store BOP
C P P P E P P= + +                                        (4) 

This encompasses: 

• Power Conversion System (PCS) capital cost 

• Energy storage medium cost 

• Balance of Plant (BOP) components cost, 

where P denotes the power rating (kW) and Estore the 

energy capacity (Wh). 

The price threshold for peak/off-peak classification is 

derived from: 

 
1 1

1 max min

i i

i
RTP RTP

− −

−
 = −                                                      (5) 

Peak load conditions are identified when 
1

min
( ) i

iRTP RTPt − + , prohibiting storage charging. The 

parameter  0,1   determines the peak load duration. 

Renewable energy costs are separated as: 

 

. .
res wind pv wind PV PV

C C C M N M S= + +=                     (6) 

representing operational expenditures for wind (N 

turbines) and solar (SPV area) assets. 

Storage revenue from energy arbitrage is calculated as: 

 

 
24

,

1

( ). ( ).(1 ( )).
store i store grid i

t

B RTP t E t t 
=

= −             (7) 

Where μ represents round-trip efficiency. 

The total stored energy is constrained by: 

24

,

1

max

store grid wind t PV

t

storeE E E E E
=

= + +                          (8) 

( )
24

,

1 1

. . . .
N

i

store ES t n t pv pv f pc t

t n

E E f v S p G 
= =

= + +   

(9) 

with renewable contributions calculated using established 

power curve and solar radiation models. 

Key differentiators from prior research include: 

• Comprehensive cost modeling encompassing all 

consumer energy resources 

• Explicit incorporation of renewable energy 

generation costs 

• Integration of real-time pricing mechanisms within 

the Energy Internet architecture 

• Advanced storage operational constraints based on 

market signals 

• Holistic energy balance considering both grid and 

renewable sources 

III.  SIMULATION RESULTS 

A comprehensive numerical analysis is conducted to 

validate the proposed mathematical framework. This section 

first details the simulation environment and dataset 

generation methodology, followed by a systematic analysis of 

the obtained results 

The model was validated using operational data from the 

Savona Campus microgrid, incorporating smart energy 

building and smart polygeneration microgrid infrastructures 

with hybrid renewable-storage systems. 

Key simulation parameters are summarized in Table III. 

 
TABLE III 

Simulation Parameter settings 

Parameter Value Unit 

Charging/discharging efficiency of 

energy storage facilities (μ) 
85 % 

Unit price of PCS, u

PCSP  256 €/kW 

Unit price of energy storage,
u

StoreP  171 €/kWh 

Unit price of BOP, 
u

BOPP  53 €/kW 

Highest previous day RTP, 
1

max

iRTP −  141 €/MWh 

Lowest previous day RTP, 
1

min

iRTP −  67 €/MWh 

Peak identification parameter (γ) 0.25, 0.5, 0.75 - 

Discharge trigger parameter (β) 0.8 - 

Max storage capacity (Emax) 141 kWh 

Wind turbine daily maintenance cost 

(Mwind) 
10 €/turbine 

PV daily maintenance cost per unit 

area (MPV) 
0.5 €/m² 

 

A comprehensive numerical analysis is conducted to 

validate the proposed mathematical framework. This section 

first details the simulation environment and dataset 

generation methodology, followed by a systematic study of 

the obtained results. 
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Fig. 3. Campus layout map and SPM and SEB equipment 

 

A.  Performance Analysis 

Within the Energy Internet framework, the control center 

receives real-time data streams from both consumption nodes 

and generation assets to optimize energy dispatch decisions. 

Distributed energy storage systems continuously monitor 

local demand patterns and renewable generation availability 

to support operational planning. 

The simulation employs the following dataset 

configurations, derived from the Savona Campus microgrid: 

• Load Profile: Fig. 4 illustrates the 24-hour load 

profile for the end-user community, exhibiting 

characteristic diurnal patterns with elevated demand 

during daytime operational hours. The profile shows 

significantly higher consumption during 06:00-17:00, 

coinciding with commercial and industrial activity 

periods, while nighttime hours (03:00 and 18:00-

24:00) demonstrate substantially reduced demand. A 
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pronounced peak demand of 1,376 kWh occurs at hour 

17:00, representing the critical target for load shifting 

interventions. This consumption pattern provides 

essential baseline data for optimizing storage system 

dispatch strategies and evaluating the effectiveness of 

peak shaving methodologies within the proposed 

Energy Internet framework. 

 

Fig. 4. The energy demand of end-users in 24 hours of one day. 

• Renewable Generation (Fig. 5): Combined output 

from Smart Polygeneration Microgrid (SPM) and 

Smart Energy Building (SEB) assets, featuring time-

varying generation profiles influenced by 

meteorological conditions. 

 

Fig. 5. Daily renewable energy generations for SPM and SEM 

• Price Signals (Fig. 6): The real-time pricing trajectory 

reflects market dynamics, with maximum prices 

occurring at hour 11:00 and minimum prices at hour 

03:00, corresponding to system demand patterns. 

 

Fig. 6. The RTPs of 24 hours of one day in the energy trading market. 

For economic analysis, the aggregate daily renewable 

generation cost is established at $1,640, based on 

infrastructure specifications from reference [13], providing a 

baseline for cost-benefit assessment of storage operations. 

The proposed optimization problem is formulated as a 

Mixed-Integer Programming (MIP) model, which is solved 

using the optimization toolbox in MATLAB software. To 

analyze the sensitivity of system performance to peak load 

identification, parametric studies were conducted for 

different values of γ, which determines the threshold for 

peak/off-peak period classification. 

The total system cost demonstrates a decreasing trend 

with increasing γ values. This relationship emerges because 

higher γ values narrow the classification window for peak 

load periods, thereby expanding the temporal flexibility for 

storage charging during lower-cost intervals. Consequently, 

the optimization algorithm can leverage extended off-peak 

durations to minimize energy procurement costs while 

maintaining effective peak shaving capability through 

strategic discharge scheduling. 

The parameter γ directly influences storage operational 

patterns by governing the charging schedule, state-of-charge 

levels, and discharge timing during peak conditions. This 

systematic variation enables the identification of optimal 

trade-offs between capital utilization of storage assets and 

energy arbitrage benefits. 

Fig. 7 illustrates the charge-discharge patterns of energy 

storage systems across three γ values (0.65, 0.70, 0.75), where 

binary states represent discharging (0) and charging (1) 

operations. The analysis reveals an inverse relationship 

between γ values and charging duration, with higher γ 

parameters resulting in compressed charging windows. This 

occurs because elevated γ thresholds classify fewer hours as 

peak periods, consequently expanding the operational 

flexibility for storage charging during off-peak conditions. 

So, Fig. 7 reveals reduced charging durations with increasing 

γ, effectively shifting peak loads. 

 

Fig. 7. The charging plans of energy storage facilities in 24 hours when 

 = 0.65, 0.70, and 0.75, respectively 
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The load shifting effectiveness is quantitatively 

demonstrated in Fig. 8 for γ = 0.65. The optimized operational 

strategy employs storage discharge during peak hours (10:00-

15:00), successfully reducing the original peak load of 1,376 

kWh to 1,406 kWh. Concurrently, strategic charging during 

off-peak hours elevates the minimum load from 392 kWh to 

819 kWh, effectively flattening the load profile. The 

implemented peak shaving strategy achieves a significant 

reduction in peak-to-average ratio, with total energy loss 

decreasing from 1,376 kWh to 868 kWh, representing a 37% 

improvement in load factor efficiency. 

 

(a) 

 

(b) 

 

(c) 

Fig. 8. (a) The best peak load shifting of energy storage in comparison with 

the original energy demand and RTP, (b) Economic components of the 
problem, (c) Proposed optimization performance summary 

 

This operational paradigm demonstrates how coordinated 

storage dispatch within the EI framework enables substantial 

load shaping benefits while maintaining system reliability 

through optimal energy temporal arbitrage. Fig. 9 shows the 

Contribution of various energy resources in this framework. 

 

Fig. 9. Contribution of various energy resources 

 

IV.  ANALYSIS OF UNCERTAINTY AND ROBUSTNESS 

The proposed optimization model utilizes forecasted data 

for renewable generation (PV and wind) and load. In practical 

EI deployments, forecast errors are inevitable due to the 

stochastic nature of weather and consumption behavior. This 

section evaluates the sensitivity of our core algorithm to such 

uncertainties and discusses its inherent robustness. 

A.  Methodology for Sensitivity Analysis 

A Monte Carlo simulation framework was established to 

quantify the impact of forecasting inaccuracies. The day-

ahead forecasts for PV power (𝑃𝑝𝑣
𝑓𝑐

) and wind power (𝑃𝑤
𝑓𝑐

) 

were perturbed with additive Gaussian noise to create realistic 

scenarios: 

𝑃𝑝𝑣
𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑃𝑝𝑣

𝑓𝑐
+ ϵ𝑝𝑣 ,   ϵ𝑝𝑣 ∼ 𝑁(0, σ𝑝𝑣) 

𝑃𝑤
𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑃𝑤

𝑓𝑐
+ ϵ𝑤 ,   ϵ𝑤 ∼ 𝑁(0, σ𝑤)                           (10) 

 

where the standard deviations σ𝑝𝑣 and σ𝑤 are expressed 

as a percentage of the installed capacity (e.g., σ = 10% 

represents a forecast error with a standard deviation of 10% 

of capacity). For each error level (σ from 5% to 30%), 500 

independent daily scenarios were generated. The 

deterministic MIP model (which treats forecasts as perfect) 

was solved for each scenario using the actual simulated 

generation as input, representing a realistic real-time 

operation where forecasts are imperfect. 

B.  Results and Discussion 

The primary performance metric, the Peak-to-Average 

Ratio (PAR) reduction, was calculated for each scenario. Fig. 

10 summarizes the results, showing the mean PAR reduction 

and its 95% confidence interval across all scenarios for each 

error level. 
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Fig. 10. Robustness analysis: Impact of renewable generation forecast error (standard deviation as % of capacity) on the achieved Peak-to-Average Ratio 

(PAR) reduction. Error bars represent the 95% confidence interval over 500 Monte Carlo simulations. 

 

Fig. 10 presents a robustness analysis of the proposed 

energy management algorithm under renewable 

generation forecast uncertainty. The x-axis represents the 

forecast error, expressed as the standard deviation (σ) 

percentage of installed capacity, while the y-axis shows 

the achieved PAR reduction. Each data point corresponds 

to the mean result from 500 independent Monte Carlo 

simulations, with error bars indicating the 95% confidence 

intervals. Three transparent zones define key performance 

regions: the  high Performance zone (σ < 10%) in light 

green, representing systems with accurate forecasting; the 

moderate Performance zone (10% ≤ σ ≤ 20%) in light 

orange, corresponding to typical day-ahead forecast errors 

in real-world grids; and the lower Performance zone (σ > 

20%) in light red. The dashed orange line depicts the linear 

degradation trend, with a slope of -0.28% PAR reduction 

per 1% increase in forecast error, quantifying the 

algorithm's graceful performance decline. The red dotted 

line marks the perfect-forecast baseline performance 

(18.5% PAR reduction at σ = 0%). The results demonstrate 

the algorithm's graceful degradation characteristic, 

maintaining approximately 70% of its optimal efficacy 

even at a 20% forecast error level, confirming its practical 

suitability for deployment under realistic prediction 

inaccuracies. 

The key finding is the algorithm's graceful degradation 

in performance. With a forecast error (σ) of 20%, the mean 

PAR reduction decreases from 18.7% (under perfect 

forecast) to 15.3%. This demonstrates that the core logic—

responding to real-time price and load signals—remains 

effective even in the presence of significant generation 

uncertainty. The strategy does not catastrophically fail 

because the BESS dispatch is primarily driven by the 

observed RTP and grid load signals, which indirectly 

reflect the system's net condition (load minus actual 

renewable generation). 

C.  Practical Implications and Pathways for Enhanced 

Robustness 

The analysis confirms that the proposed deterministic 

model possesses inherent robustness suitable for 

environments with moderate forecast uncertainty. For 

systems with very high penetration of variable RES (where 

σ > 25%), the following enhancements are recommended 

as future work: 

1. Integration of Stochastic Programming: 

Reformulating the problem as a two-stage 

stochastic program where the first stage decides 

ESS investment/commitment, and the second 

stage recourse actions adjust dispatch based on 

revealed renewable output. 

2. Model Predictive Control (MPC): Implementing 

a rolling-horizon MPC framework that repeatedly 

solves the optimization with updated short-term 

forecasts, thereby mitigating the impact of day-

ahead forecast errors. 

3. Hybrid Forecasts: Employing advanced 

forecasting techniques that blend physical models 

with machine learning to reduce the baseline 

error (σ). 

The current model provides a strong and 

computationally efficient foundation, with the presented 

robustness analysis defining its operational envelope. 

 

V.  CONCLUSION 

This research has developed and validated an Energy 
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Internet optimization problem incorporating peer-to-peer 

energy markets and distributed storage systems to 

effectively address the peak load shifting challenge. The 

study establishes a comprehensive mathematical 

programming formulation and demonstrates its practical 

implementation through optimization-based simulation 

using real-world microgrid data. 

The numerical results confirm the method's capability 

to generate real-time operational decisions that achieve 

significant load shaping benefits. Furthermore, the 

analysis reveals that transactive energy mechanisms 

within the Energy Internet create economic incentives for 

end-users to invest in storage assets and renewable 

generation, thereby enhancing system-wide flexibility. 

Several promising directions emerge for future 

research: 

• Integration of additional renewable energy 

resources with complementary generation 

profiles 

• Multi-objective optimization incorporating 

environmental emissions alongside economic 

criteria 

• Robust and stochastic programming approaches 

to address uncertainties in renewable generation 

and load demand 

• Reliability-oriented analysis considering network 

losses and system resilience metrics 

• Investigation of advanced market mechanisms 

for distributed energy resource aggregation 

These extensions would further enhance the practical 

applicability of the proposed optimization framework in 

future power systems with high renewable penetration. 
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