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Abstract— Microgrids are practical view of integration of 

distributed generations (DGs) into distribution systems. In this 

regard, utilizing appropriate technologies and accurate 

recognition of energy generation and storage systems, as well as 

optimal scheduling for these resources are of the paramount 

importance in microgrids. Therefore, connection of DG resources 

and storages to the grid in the form of virtual power plant in order 

to increase efficiency and owners’ interest has attracted significant 

attention of researchers and distribution network operators. This 

research presents a model for optimal day-ahead scheduling of 

heat-power generation units in a multi-zonal virtual power plant 

(VPP). This VPP includes a number of combined heat-power 

generations, distribution network loads, and electrical vehicles 

with smart charging as well as energy storages. In order to 

approach reality of distribution systems, uncertainty related to 

behavior of electrical vehicles was modeled with Monte Carlo 

simulation while uncertainties of generation and 

electrical/thermal loads were modeled using a probabilistic 

method. Matlab software and swarm robotics search & rescue 

(SRSR) has been used as an optimization tool in this paper. Results 

confirmed the effectiveness of the proposed method.  

 
Keywords— renewable energy sources, energy storage, 

combined heat and power generation, virtual power plant, load 

uncertainty, electric vehicles. 

 

I. INTRODUCTION 

mart grids’ utilization has experienced a remarkable 

increase in power grids; meanwhile, virtual power plants 

(VPPs) have been promising tools to promote effective 

penetration of distributed generations (DGs) and energy storage 

devices in microgrids. To provide continuity of balancing 

demand and generation, renewable sources will be more active 

than today in near future due to the tendency of massive 

investment on renewable energy sources (RESs) by countries. 

However, due to the uncertain and intermittent nature of RESs, 

RESs would create problems on power system operations such 

as power quality, efficiency, stability and reliability. Owing to 

having problems with RESs integration, virtual power plant 

(VPP) has introduced to make this integration smooth without 

compromising the grid stability and reliability along with 

offering many other techno economic benefits [1]. 

 In addition, VPPs, while working under supervision of a 

generation coordinating unit, are strongly effective tools, 
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allowing consumers to respond to load management signals. 

Load response can be economically beneficial both for 

distributed energy resources (DERs) and the power grid itself 

[2],[3]. A large number of researches carried out in this field 

reflect the great attention of researchers to VPPs. Recently, the 

idea of VPPs is extended to various generation resources like 

renewable energy sources (RESs), combined heat and power 

plants (CHPs), as well as controllable loads and energy storage 

systems when acting as a unified power plant [4],[5]. 
In smart-grid framework, VPPs allow small plant owners to 

access energy market in a “collective” form to compensate for 

unanticipated power fluctuations due to wind farm and solar 

energy utilization via coordinated operation of small power 

plants [6]. Management systems of generation scheduling 

coordination are the central core of a VPP, which communicate 

using a communication infrastructure for data exchange [7]. 

Scheduling of generating units receive signals from power 

farms (wind and solar) and market. This schedules and operates 

generation power of each energy source which is done 

regarding to market price signals, energy demand, wind speed, 

and sunlight intensity. It takes into account the current energy 

level of energy storage devices as well [8]. 

A new concept of VPP is presented in [6], taking into account 

energy storages, CHP systems, RESs, responsive loads, and 

also various forms of micro-generators as well as conventional 

power plants. Based on this initial design, all resources 

belonging to a given company exchange power with utility from 

a common coupling point (CCP). In [9], authors built a CHP 

dispatch model for wind-CHP system with solid heat storage 

device aiming at minimizing system coal consumption, and set 

system demand-supply balance and units’ operation conditions 

as the operation constraints. Furthermore, robust stochastic 

optimization theory has been utilized to describe wind power 

output uncertainty in a small-scale VPP. 

Recently, especially in [10], a new and challenging model for 

VPP in the form of large-scale virtual power plant (LSVPP) has 

been proposed and studied. In the mentioned research, various 

power generators, storages and load sources are distributed in a 

vast geographical area, while each of them has their own special 

coupling point to utility. In [11], a bi-level scheduling approach 

for VPPs and intermittent renewable DGs with a large number 

of distributed thermostatically controlled loads is presented to 

diminish the net exchange power deviation caused by the 
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forecast error of renewable energy. Similar problems have been 

solved in [12] using linear programming and in [13] using 

stochastic programming. It should be noted that grid limitations 

are not considered in [12]; also there is no possibility for load 

reduction scheduling. However, the case study in this paper is a 

system which includes only one thermal power plant and two 

renewable energy sources with one common coupling point to 

utility. In [14], the same authors have presented another case 

study, in which focus is on minimizing operation costs instead 

of maximizing profit. Other papers have considered different 

time horizons and time steps using linear programming. In this 

regard, [15] has focused on optimal strategies of load control in 

real time, while [6] has regarded only annual average of 

parameters (costs, prices, and energy generation) in order to 

determine optimal annual planning. Authors in [6] have 

presented a developed version of their algorithm with goal of 

determining optimal storage capacity in VPP, taking into 

account sensitivity analysis for price parameters in [8]. Concept 

of VPP regional control has been well described in [13] and 

[15], but presence of RESs has been overlooked in these works. 

Also, model of thermal power plants in mentioned works is very 

simple, since plant minimum power is not taken into 

consideration, leading to over-simplification of power plants’ 

contribution problem. In [16] utilizing large number of DERs 

in a VPP in order to generate and market both thermal and 

electrical energy is proposed, however only thermal storage was 

considered in case studies and price of energy and fuel has been 

assumed to be constant. 

The ultimate goal in [17] to determine the active demand power 

required to increase system loading capability and to withstand 

disturbances. The effect of different types of DG units in 

simulations is considered and then the efficiency of each 

equipment such as converters, wind turbines, electrolyzes, etc., 

is achieved to minimize the total operation cost and losses, 

improve voltage profiles, and address other security issues and 

reliability. The simulations are done in three cases and 

compared with HOMER software to validate the ability of 

proposed model. 
On the other hand, decreased dependency on fossil fuels and 

reduced pollution are among the reasons for growing use of 

electric vehicles (EVs) in personal transportation. In this regard, 

plug-in hybrid EVs (PHEVs) has attracted many researchers, so 

that in many researches EVs are present in VPPs. In [18], an 

analytic based investigation on comparison between utilization 

of bulk electrical storages and EVs for a VPP has been 

accomplished. In other words, these technologies have been 

compared in terms of business incentives and technical 

performance. In [19], a VPP model with EVs and wind turbines 

in LSVPPs has been considered. EV behavior has been 

simulated with Monte Carlo model. Modeling is done on a 118-

bus network where operation costs and pollution emission were 

considered as the objective functions. In [20], a stochastic 

programming for VPP with presence of wind units, solar units, 

and EVs has been presented, taking into account uncertainty. In 

this work, enhanced particle swarm optimization algorithm 

with fuzzy rules has been used for optimization, and multi-

objective function including optimization cost and network 

reliability has been evaluated. In [21], a new method of VPP 

operation was proposed for taking part in day-ahead energy 

market. Uncertainty in generation, consumption, and prices was 

modeled using a stochastic method. Monte Carlo simulation 

was also considered in this work in order to model vehicle 

random behavior. Presence of EVs in a VPP in order to provide 

reserve has been modeled in [22]. In this paper, programming 

was performed so that EVs will be charged when energy 

exceeds consumption and will be discharged as reserves in 

overload time. In [23], it was shown that how generation 

scheduling coordination unit can manage its energy resources 

in order to maximize aggregate daily profit (regarding buy and 

sell price). 

This research presents a new algorithm for VPP scheduling 

optimization which simultaneously executes schedule for 

generation unit contribution, thermal and electrical storages, 

EVs, and load flow. Although there have been some efforts in 

previous researches [10]-[15] on LSVPPs, none of them have 

considered the following items simultaneously, which will be 

addressed in this work: 

 

1. Thermal aspects: local thermal loads, CHP units and 

thermal power plant requirements. 

2. Energy storage devices (both electrical and thermal). 

3. Taking into account EVs in a LSVPP with smart 

charge/discharge. 

4. Considering consumer uncertainty in the form of a 

statistical method. 

Unlike [12] and [13], main focuses in [23] is optimization, 

providing a general schedule for LSVPPs while system 

limitations are present. In this research a regional scheduling 

algorithm for VPPs is proposed taking into account consumer 

uncertainty. An evolutionary algorithm has been used during 

the simulations in order to examine the network in grid-

connected and islanded modes. 

II. PROBLEM FORMULATION AND UNIT SCHEDULING  

In this work, a group of VPPs were connected to a general 

distribution network. Structural properties of elements in the 

network including active source and storage capacity had been 

determined in previous stages and might not change during the 

operation. 
 

A. Topology and model of VPPs  

VPPs studied in this work were a complex of a generation 

system connected to a radial general network separately and fed 

through a sub-bus. Each VPP was modeled as shown in  

Fig. 1. Economic profit and associated transactions of each 

load and generation resource were not taken into account 

separately within each VPP; consequently, LSVPP 

optimization was considered as shown in  

Fig. 2. In this network, only active power of elements was 

investigated and reactive power and transmission line losses 

were overlooked. 

One of the important and emphasized points in this research 

compared to previous ones, like [6], [8], [23], [24] is that in this 

work only one VPP will not be investigated; but each VPP is 

just an element of a larger network (LSVPP). Therefore, using 

expressions proposed in [10], the present work focuses on a 

LSVPP, regarding the real location of each RES in network. 

Thermal section of the model connected to right side of the bus 
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is a certain load which can be fed using CHP, boiler or thermal 

storage device. 

If thermal generation of a CHP exceeding network thermal 

demand is not absorbed via thermal storage element because of 

energy and/or power limitations, the surplus thermal energy 

(Psur) will be released using a thermal converter. It should be 

noted that both CHP and boiler are gas-fired. Electrical section 

of the network is divided into two sub-sections; the first sub-

section is called internal part, including an automatic 

conventional generator, the boundary of which is PCCi. This 

part of the model, which regarding  

Fig. 1 connects to the left side of bus, mainly consists of an 

electrical consumer which can be fed via a CHP, an internal 

RES, and/or an electrical storage device. The Second sub-

section includes an external RES which is able to sell energy to 

network or internal part. 

 

 
 

Fig. 1.   A single VPP structure 

 

 
 

Fig. 2.   General network including n VPPs 

B. Optimization Problem Structure  

The proposed algorithm was executed in one hour steps. 

Daily optimal operation algorithm was determined for the 

dispatchable generation resources (boilers, CHPs, conventional 

power plants) and energy storage devices. This work aims at 

meeting thermal and electrical loads as well as maximizing 

daily net benefit of VPP. Also this algorithm was designed so 

as to allow load shedding and/or RES limitation in case of 

severe shortage in transmission line capacity during LSVPP 

islanded operation. 

a) Restructured systems’ tariff 

In order to form tariff for restructured systems, following 

pricing mechanism is applied. 

1. Energy sales tariff: when internal generated power (Pint) 

is positive i.e. it sales energy to upstream network as well as 

it meets the internal demand, in addition to the main sold 

energy price, it deserves an extra earning as encouraging 

tariff [25]. 

2. Fuel purchase tariff (generally natural gas): In case of 

CHPs, regardless of type of consumption, to generate either 

heat or electricity, a combination of the two prices is 

considered as an encouraging tariff  [25]. 

3. Incentive plan for RESs: It is an extra payment to the 

total generated power, either consumed internally or sold to 

upstream network. 
 

C. Mathematical model 

a) CHP 

Electrical to thermal power conversion rate (λ) is considered 

as a constant factor in this system. 

,, ,
.s s

chp ptch pt echp pt
P P  (1) 

As shown in Eq. (2), the CHP power output is either zero or 

a value between minimum technical power and nominal power.  

min, max,, , ,
. .s s s

echp pt echp ptchp pt echp pt chp pt
P U P P U    (2) 

where, 
,

s
chp pt

U    indicates on/ off state of the units. 

b) Thermal and electrical storage device 

One of the main capabilities of the proposed algorithm is 

optimizing thermal and electrical storage devices’ energy level 

in each stage of time. Equations (3) and (4) state power limits 

during charge/discharge for electrical and thermal storage 

devices, respectively. 
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Each thermal or electrical storage device can be modeled via 

applying related minimum and maximum allowable energy 

levels. Batteries’ depth of discharge (DoD) has direct effect on 

their life span [26]. Equations (5) and (6) refer to lower and 

higher limits of electrical storage energies, respectively. 

 

 , min,
, , ,

         
char  dischar

, max,
, , ,

  
char dischar

t t
es start p es ps s

es p es pi es pi

i Ts i Ts

t t
es start p es p s s

es p es pi es pi

i Ts i Ts

e e
P P

e e
P P







 

 

 

 


 


 

 

 

 

(5) 

 

 

 

(6) 

Equations (7) and (8) are related to thermal storage devices. 

In order to include energy efficiency in operation cycle, charge 

and discharge stages were considered completely separate. 
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Ts    and Te  are start and end time of simulation, 

respectively. At the end of simulation period, initial energy 

level in all storages should be equal to one at the beginning of 

operation period: 

, , ,
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, , ,
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(10) 

If final energy level at the end of operation period differs 

from initial value, for instance, when simulation algorithm is 

applied for less than 24 hours, previous equations will change 

to following ones: 
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c) Internal and external RESs 

Internal and external RESs’ generated power can be limited 

regarding predicted solar and wind powers: 
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(13) 

 

(14) 

Since generated power via RESs is presented into market 

with the highest prices, limiting generated power and not using 

RESs’ maximum generated power is not economical, as the 

goal is to maximize VPP earning (in objective function). To this 

aim, optimization algorithm disconnects RESs only in 

conditions where either generation exceeds demand or network 

faces high congestion. 

d) Boiler 

A boiler becomes active when CHP is not able to respond 

fully to the thermal load. If fuel price changes during the day, 

algorithm is capable of recognizing operation strategies in order 

to avoid using boiler. This is one of the capabilities of proposed 

method compared to those of previous researches regarding 

VPPs [16]. Thermal power provided by boiler should remain in 

its capacity limits: 

max,,
0 s

boil ptboil pt
P P    (15) 

e) Load shedding 

When it is not possible to respond to demand fully, because 

of severe network limitations and lack of internal generation, a 

deliberate load shedding limited to utmost γ, is planned by 

limiting a part of electrical power demand. 

, ,0 s
sens pt el ptP    (16) 

f) NETWORK OBJECTIVES 

Current in all transmission lines should not pass the 

allowable thermal limit: 

max,,
s

lin ptlin pt
P P   (17) 

 

Network radial topology allows simple power flow 

calculation starting from first unit in  

Fig. 2. If the algorithm is executed in islanded operation, 

allowable power for the last line connected to substation is set 

zero: 

, 0lin NptP   (18) 

g) EV charging behavior 

PHEV charging behavior is influenced by various factors 

including charging strategy, number of PHEVs being charged 

at the same time, charging type, battery state of charge (SOC), 

capacity, charging start time, and charging time duration. In this 

research, a smart strategy was considered for vehicle charging; 

this means PHEVs would not necessarily be charged at any 

hour they are connected to charging plugs. Main idea beyond 

all smart charging strategies is that vehicles be charged when it 

has maximum benefit both for vehicle owner and for network 

operator. A normal distribution function is proposed as follows 

in order to indicate complexity of using different smart charging 

programs and charging start time [27]: 

0.5
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(19) 

Remaining charge state of battery is calculated from travelled 

distance by vehicle. It should be noted that travelled distance by 

a vehicle is presented as a logarithmic probability distribution 

function [28]. Therefore, battery SOC is calculated using 

vehicle travelled distance and its all-electric range (AER): 

100%

0                             m > AER

SOC AER m
     m AER

AER




  
 



 (20) 

Various types of PHEVs are available based on their AER, 

e.g. PHEV-20, PHEV-30, PHEV-40, PHEV-60 where the 

number indicates PHEV AER in terms of miles. In this 

research, PHEV-20 was considered as it has been proven during 

a long time that it has high usage potential in the market [29]; 

however, the proposed method is general and other types of 

PHEVs can be replaced. Charging time of PHEVs is calculated 

by the following formula: 

 1bat
D

C SOC DOD
t

P

  



 (21) 

It should be noted when PHEVs reach house, depending on 

vehicle's need and regarding maximum DoD limits, (reported 

as 80% [29]) charging starts, but charging duration is limited by 

both charger performance level (p) and charger efficiency (η). 

Charging rate, as shown in Table 1, is determined by the charging 

level of charger. Level 1 and 2 are mainly used for PHEVs 

capable of being connected at house. Level 3 was not 

considered in this research, since it is used for public and 

commercial transportation. In addition, battery capacity 

distribution (Cbat) in a given range for each class, considered as 
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a normal probability distribution in [28], is as follows: 
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Table 1. Various types of PHEV charger 

Charger type Input voltage 
Max. Power 

(Kw) 

Level 1 120 VAC 1.44 

Level 2 208-240 VAC 11.5 

Level 3 208-240 VAC 96 

Level 4 (DC) 208- 600 VDC 240 

 

h) Thermal and electrical power balance 

Regarding Fig. 1 and equations (24) and (25), power balance 

in internal and external buses would be as follows: 

 

, , , ,int, , ,

1

, ,,N int, int,
1

s s s s s s s
ires pt es pt eens pt PHEV ptpt echp pt el pt

p
s s s s s

eres pt eres itlin pt pt it
i

P P P P P P P

P P P P P





     

   
 

(23) 

 

(24) 

In previous equations, power flow calculation starts from 

VPP unit number 1. Also, thermal power balance can be 

formulated as follows: 
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D. Objective function 

The objective function maximizes VPP total profit. To this 

aim, following profits have been taken into account: 

a) Energy sales and purchasing cost at PCCi 

In each VPP unit, profit and cost from energy sale and 

purchase (Cpcci) depend on exchanged power at PCCi and 

energy sale and purchase price. 

, ,int, int,

, ,int, int,
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s s s
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 (26) 

b) ENCOURAGING PROFIT FOR RES UNIT 

In ePCC    , power generated by external RES (ERES) will 

include the following profit (
ePCCC ) if it is fully sold to 

network: 

, , ,
s s
pcce pt eres h eres ptC c P  (27) 

In addition, internal RES (IRES) will receive following profit 

if either its generated power is sold to utility or consumed by 

internal loads: 

, , ,
s s
icce pt ires h ires ptC c P  (28) 

c) Fuel cost  

Fuel cost for power generation (cgg,h) is lower than cost for 

thermal power generation (cgh,h) due to taxes [30]. Fuel cost 

per (cttc) per unit p and time t is calculated through the 

following equation: 
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(31) 

In aforementioned equations,  boilf   converts ,gh hC    to 

cost, while chpf    considers both  ,gh hC   and ,gg hC    in order 

to avoid considering taxes for CHP unit in current tariff 

framework. Start-up costs are generally considered for large 

thermal power generation units, while it is negligible for small 

CHPs. 

d) Cost of risk 

Preplanned and intentional load shedding has heavy fines. In 

order to avoid such outcomes, this cost is formulated as follows: 

, ,h ,
s s
sens pt sens sens ptC C P   (32) 

During programming for units, the algorithm may plan an 

intentional load shedding only when the network is operated in 

islanded mode and network generated power does not meet all 

demands. 

e) Objective function final form 

Final profit earned from all units’ operation during total time 

period of generation plan is indicated as follows: 

 , , ,, ,
1
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NpTe
s s s s s
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u Ts h
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i e



 

      (33) 

i) Uncertainty model in demand 

In recent years, a large number of methods have been used in 

order to model uncertainty due to DERs application as well as 

consumption uncertainty especially in distribution level. 

Among these methods are Monte Carlo-, Classic clustering-, 

and Fuzzy-based algorithms. Probability or decision-tree 

method can be very effective when parameters with uncertainty 

are determined exactly. This method can be based on results, 

like results from clustering method. Ease of implementation is 

one of this method’s advantages [31]. In this paper, 

consumption demand level uncertainty in electrical systems 

was simulated based on this method [31]. 

In order to model consumer load uncertainty, different 

methods have been presented for expected load percentage, 

estimated calculation and corresponding probabilities. 

Clustering is one of the most well-known methods, which can 

be planned weekly, monthly, or annually. In this work, load 

uncertainty was discretely modeled and probability tree method 

was used to generate load uncertainty scenarios [31]. Based on 

presented scenarios, VPP load demand is described in  

 

 
 

Table 2. As shown in this table, hourly probabilities are 
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divided into two 12-hour periods, each of which has been 

assigned to various probabilities. Regarding previous 

researches in load anticipation, the highest probability (0.6) is 

assigned to the most exact anticipation (100%), while other 

anticipations have been modeled via lower probabilities. 

 
 

 

 

Table 2. Discrete probability values for 24 hours ahead 

Expected load 

(Hours 13-24) 

Expected load 

(Hours 1-12) 
Probability 

Scenario 

Number 

100 % 100 % 0.6 1 

98 % 98.5 % 0.15 2 

103 % 102 % 0.15 3 

97 % 98 % 0.05 4 

104 % 103 % 0.05 5 

 

In this work, similar probability level for various load types 

were considered in all regions. This means, proposed 

probability structure in Table 2 is taken into account both for 

electrical and thermal loads. Although this assumption is not 

close to reality, since patterns and electrical and thermal load 

levels are different in microgrids, it is considered for simulation 

simplicity. 

III. SWARM ROBOTICS SEARCH & RESCUE OPTIMIZATION 

During recent years, beside the methods based on mixed 

integer programing (MIP) [32]-[35], several heuristic methods 

have been developed along with the advancements of large-

scale soft computing. In this paper, a recently developed 

evolutionary algorithm called “Swarm Robotics Search & 

Rescue (SRSR)” has been employed for optimization obligation 

[36]. Flowchart depicted in Fig. 3 shows the procedure of 

algorithm implementation. As opposed to the previous nature-

inspired algorithms, SRSR is inspired by artificial intelligence 

of robots in cognitive swarm robotics. Details of optimization 

algorithm are provided in [36]. 

IV. SIMULATION AND RESULTS 

In this work, a multi-zonal VPP including five regions was 

studied. Based on [32] and [38], incentive value for 

photovoltaic generation unit is 400$ per megawatt. However, 

this amount is 350$ /MW for wind power generation unit. Also 

referring to [39] and [40] load loss cost is 8$ per kilowatt.  Table 

3 describes structural details of each VPP. System data is based 

on [23]. To model vehicles’ behavior, Monte Carlo simulation 

has been used in each studied scenario. Average and standard 

deviation for daily travelled distance of PHEVs are assumed 33 

and 20.4 miles, respectively [28]. In this paper, level 2 of 

chargers was used according to Table 1. It is assumed that in 

each of five VPPs, due to limitations in charger number and 

vehicle plug-in technology, it is possible to connect utmost 15 

vehicles. It should be also noted that regarding uncertainty of 

vehicles’ presence in operation hour, some of them are not 

accessible. 

 

 
Fig. 3.  Flow chart of the proposed SRSR algorithm 

 

 Table 4 shows market specifications and consumption 

demand for each VPP in a 24-hour time horizon. In case studies 

of this work, gas cost for thermal-  ,gh hC   and electrical-power 

generation ,gg hC    are considered 0.368$/m3 and 0.349$/m3, 

respectively [23]. Fuel cost functions for CHPs are as follow: 
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where lower heating value (LHV) for natural gas is 8250 

Kcal/m3. Also, 860 is kWh to kcal conversion ratio.  

In this research, 1/4 of delivered gas for CHP was tax-free. 

This means one fourth of delivered gas will be used for 

electrical- and the remaining will be used for thermal-power 

generation. Simplified function for boiler fuel cost is also 

presented as: 

 , ,

860
boil gh h gh hf C C

LHV
  (35) 

Referring to [32] and [38], incentive value for photovoltaic 

generation unit is 400$ per megawatt. This amount is 350$ 

/MW for wind power generation unit. Also referring to [39] 

and [40], load loss cost is 8$ per kilowatt. Two various case 

studies, including grid-connected and islanded operation, have 

been done in this work.  

A. Case study 1: grid-connected operation 

In this case, in addition to presented operation objectives in 

previous section, limitations associated with transmission lines 

are also considered. It is expected that in peak hours, VPP uses 

market transactions as well as VPP’s generating units and 

storages in order to reduce costs, increase benefit and solve the 

peak-shaving problem. 
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Fig.4- Fig. 8 show the results related to operation status of 

various units for each VPP.F shows scheduled generation of 

CHP in 24-hour period in five regions. As expected, during last 

hours of night, where energy market price is low, each region 

meets a part or all of its demand from the market. Presence of 

CHP results in small generators’ efficiency increase, as well as 

it reduces natural gas purchase cost for boiler. At the hours 

when upstream network electricity price is low, each region 

purchasing electrical power from utility consumes part of it and 

stores the remaining in storage devices; otherwise, each region 

uses internal resources when utility electricity price is high, and 

sells surplus electrical power to utility and hence reduces its 

consumer costs. 

 

Table 3. Structural data for generation units, storages, and transmission lines 

Unit 5 Unit 4 Unit 3 Unit 2 Unit 1  

150 90 80 80 50 
max[Kw]echP  

20 55 20 10 5 
min[Kw]echP 

45 33 25 33 30  %chp 

1 0.9 1.1 0.7 1.5  

1 5 1 5 7 [Kw]es charP 

1 5 1 5 7 [Kw]es discP 

30 20 10 60 30 
max[Kwh]esP 

4 0 0 20 10 
min[Kwh]esP 

7 20 0 60 18 [Kwh]es startP 

7 5 5 10 5 [Kw]ts charP 

7 5 5 10 5 [Kw]ts discP 

30 40 20 70 40 
max[Kwh]tsP 

3 0 5 5 10 
min[Kwh]tsP 

10 40 10 50 20 [Kwh]ts startP 

93 85 90 95 85  %boil 

500 500 150 500 500 
max[Kw]linP 

 

 

 
Fig. 4 CHP electrical power for 24-hour ahead (case study 1) 

 

 

 

 

 

 
Table 4. Electrical and thermal consumed and RES generated power price 

Plant 5 Plant 4 Plant 3 Plant 2 Plant 1 
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6 0 0 140 0 0 60 32 11 0 33 107 0 0 0 121 0 0 99 156 63 106 1 

2 0 0 135 0 0 60 67 7 0 33 99 0 0 0 86 0 0 99 132 53 106 2 

4 0 0 112 0 0 59 78 0 0 33 112 0 0 0 98 1 0 99 110 51 106 3 

1 0 0 89 0 0 60 67 0 0 33 110 0 0 0 73 0 0 99 110 50 106 4 

0 0 0 101 0 0 60 44 2 0 33 145 0 0 0 74 6 0 99 140 51 106 5 

0 0 0 78 1 0 60 54 7 0 33 145 3 0 0 93 6 0 100 104 52 106 6 

0 2 2 131 0 3 59 68 2 3 34 89 0 2 2 84 0 2 92 167 63 106 7 

0 5 79 129 1 5 60 104 4 5 35 134 6 5 98 104 2 5 84 156 67 125 8 

1 11 86 149 0 11 60 57 7 10 50 105 3 9 112 121 2 2 10 184 73 135 9 

0 3 71 123 4 3 59 123 7 2 61 120 0 2 105 146 6 2 88 219 80 135 10 

1 7 90 152 1 7 59 109 2 8 68 132 0 6 117 175 4 7 88 208 80 135 11 

0 13 75 106 4 11 59 87 2 12 70 169 0 11 100 178 13 11 83 177 80 135 12 

1 15 1 137 4 12 59 62 0 15 70 122 10 12 86 105 6 14 92 113 70 135 13 

0 13 0 125 4 11 60 84 24 11 65 154 16 12 117 133 9 11 97 156 69 135 14 

0 7 2 108 4 7 60 88 0 8 65 107 0 6 105 150 13 7 97 123 73 135 15 

0 2 22 126 24 3 60 63 0 2 68 142 3 2 115 148 9 2 97 207 79 135 16 

3 24 82 134 17 24 60 96 0 24 67 151 3 24 117 172 2 24 97 217 80 135 17 

0 17 83 107 11 19 59 58 0 16 58 129 24 17 112 160 24 17 95 222 71 135 18 

6 10 83 133 4 10 59 67 0 11 50 137 3 10 111 119 24 10 95 204 66 135 19 

6 5 68 113 4 5 59 76 0 5 40 132 16 5 102 115 4 5 95 193 67 125 20 

13 3 2 99 4 3 59 58 1 3 44 99 16 3 2 59 4 2 96 141 72 125 21 

24 0 0 132 0 0 60 56 0 0 33 96 0 0 0 48 6 0 95 86 77 125 22 

17 0 0 129 0 0 60 45 0 0 32 149 0 0 0 56 2 0 94 100 67 125 23 

13 0 0 87 0 0 60 56 0 0 32 93 0 0 0 55 1 0 93 99 63 106 24 

  

It can be observed that the first unit is operated at its 

maximum rate in order to meet electrical demand in most of the 

hours. Since in most of the time, electrical demand is higher 

than its generating capacity, this unit keeps its generation close 

to maximum amount, providing the remaining from storage 

sources, and if it lacks power, meets the remaining using 

upstream utility power. For the fourth unit, this is the same from 

10:00 to 16:00. The difference is that in this region, thermal 

load demand is uniformly high. Therefore, it is economically 

beneficial to use CHP instead of boiler to meet thermal loads 

and sell surplus electrical power to energy market, regarding 

higher energy purchase price. As it can be seen, met load by the 

fifth unit at 16:00 is at its maximum thermal and electrical 

amount. Since this unit has high generating capacity, its 

generation reaches to maximum amount. It should also be noted 

that, due to low market sale price (not being economical) and 

storage limits, the fifth unit would not generate at its maximum 

rate. Fig. 5 and Fig. 6 show daytime stored energy trend. 

Regarding storage rate limitation, storage devices are capable 

of storing power with known values. Also, it is assumed that in 

order to increase storage devices’ lifetime, their end of schedule 
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level returns to initial level; so each region is limited not to 

generate its maximum power in all hours. It should be noted 

that VPPs’ priority sequence in power generation is internal 

load demand, storage in limited storage devices, and finally sale 

to market in case of surplus power. Therefore, it is not 

economical for VPPs to operate CHPs in all hours in their 

maximum rate. 

 
Fig. 5 Electrical charge/ discharge state for 24 hours ahead (case study 1) 

 

 
Fig. 6 Thermal charge/discharge state for 24 hours ahead (case study 1) 

 

 

Depending on gas, electricity price and load patterns, RES 

plants’ generation and technical limitations in CHPs of each 

region, and electrical and thermal charge/discharge cycle may 

be totally different. So, it is not easy to decisively investigate 

power changes in storages. In addition to all mentioned 

parameters, charge and discharge equality during an operation 

interval is an objective which makes the anticipation of storage 

device behavior even more complicated. Fig. 7 presents boiler 

generated thermal power procedure during daily operation 

period. As shown in the figure, corresponding to thermal load 

increment of each region from 8:00 to 20:00, boiler operation 

increases in mentioned time. This condition is also observable 

for the second unit. Regarding that in mentioned hours, thermal 

load of this region is much higher than CHP thermal generation 

as well as thermal storage device capacity; boiler presence is a 

necessity in order to compensate for power shortage. It should 

be noted that, regarding CHP and storage performance near its 

maximum rate during the mentioned hours, boiler performance 

pattern in this region exactly coincides with thermal load 

pattern. 

 
Fig. 7 Thermal power by boiler (case study 1) 

 

For instance, this state at 13:00 hours where second region 

thermal load decreases dramatically for one hour, is obviously 

observable; therefore, the second boiler, according to this 

demand decrement, decreases its generation. Power flow in 

interface transmission lines between regions and upstream 

utility is shown in Fig. 8. 

 
Fig. 8 Power flow of transmission line between regions (case study 1) 

 

As shown, due to line high capacity, no line reaches its rated 

value. It should also be noted that, transmission line in region 3 

which has lower thermal limit, reaches close to its rated 

capacity at 11:00 hours. Remarkable point is that power 

analysis in of line 5 (connected to upstream utility sub-station) 

show that unlike other times where upstream acts as a feeder, at 

11:00 hours is seen as a load from LSVPP point of view. In this 

condition, VPPs are capable of selling energy to upstream 

network as well as feeding internal loads, and unlike other times 

of day, performance of photovoltaic units, CHPs’ surplus 

generation, and electrical storage devices, reverse power flow 

direction in upstream connected transmission line. This 

direction change in power flow is also seen during different 

hours in other lines. Number of scheduled vehicles in 24-hour 

ahead operation is shown in Fig. 9.  

It is shown that number of vehicles conforms to network load 

pattern to some extent, so that during peak time, number of 

recruited vehicles increases; however compared to CHPs, this 

conformity would not be so difficult; since, regardless of 

conformity to load pattern, entering time of vehicle units to 

parking would associate some percentage of uncertainty in the 

charging procedure of a smart vehicle. Also, the amount of 

battery charging when vehicle enters the parking will depend 

on factors such as travelled distance, which is a random process 

as well. 
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Fig. 9 Number of EVs in operation horizon (case study 1) 

 

Total benefit earned from VPPs’ operation conforms to 

combination of gathered energies’ sales pattern and 

encouraging subsides from external and internal RESs as well 

as load pattern; while current costs’ pattern is generally a 

combination of pattern of consumed electrical and thermal load 

demand as well as energy purchase price from market. 

 
Fig. 10 LSVPP financial transaction in 24 hour ahead (case study 1) 

 
Fig. 10 shows operation costs, earnings and profits from 

generation schedule. It should be noted that these relations and 

pattern combinations are not linear. As it is shown and also 

mentioned before, at 8:00 to 22:00 hours when electricity sale 

price is higher, each region uses its internal units in order to 

meet demand, so power purchased from utility decreases; 

therefore, operation costs reaches its minimum value due to 

higher generation. In this special study on VPP scheduling and 

planning, mathematical expectation for resulted income 

regarding Table 5 reached 534 dollars, which compared to the 

case without load uncertainty, shows 3.5% reduction [23]. 
 

Table 5. Final operation profit expectation calculation in grid-connected 

mode (case study 1) 

 Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 
Profit[$]  -520.83 -543.46 -566.08 -531.86 -584.46 

Probability 0.6 0.15 0.15 0.05 0.05 

Expected profit -534.745 

B. CASE STUDY 2: ISLANDED OPERATION 

In this case islanding operation of network is studied. In this 

case part of the network disconnects from upstream distribution 

network. In mentioned condition, network should keep dynamic 

and static stability. To this aim, LSVPP generation schedule and 

performance in islanded mode is one of the most important 

problems related to distribution network operation, which was 

studied in this paper. In this way, an exact schedule was 

prepared for islanded system operation, taking into account 

system reliability and adequacy. In order to execute this, it was 

assumed that interface transmission line between last region 

and upstream network substation, disconnects after an event. 

This is shown in Fig. 11. 

Fig. 12- Fig. 16 show results regarding operation status of 

various elements in each VPP for current case study. In order to 

compare CHP units’ generation power for normal operation in 

Fig.4 and islanded operation in Fig. 12 two points should be 

considered; 

 
Fig. 11 Fault at final VPP connection point to upstream network 

 

 
Fig. 12 CHP electrical power for 24-hour ahead (case study 2) 

 

First, due to inability of upstream network in providing 

power, all units should provide electrical power and as much as 

possible thermal power in their own region. Therefore, 

generation level for some units decreases due to inability in 

selling surplus power to upstream network (e.g. unit five at 1:00 

to 8:00 hours), and at some hours power increases due to 

meeting balance power objective (e.g. unit one at 7:00 to 17:00 

hours). However, it should be noted that power exchange with 

adjacent region units is still possible. Second point is that, by 

comparing load pattern of each region and generative power of 

CHPs in that region, it is observable that CHP generation 

pattern conforms highly to load pattern of the same region. 

Noticeably, due to presence of electrical storage and power 

exchange possibility with adjacent regions, this will not be a 

definite conformity. Electrical and thermal storage charge and 

discharge state in LSVPP islanded mode are shown in Fig. 13 

and Fig. 14, respectively 

It is shown that smooth and uniform changes in charge and 

discharge levels of electrical storage devices, turn into sharper 
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changes in islanded mode in order to meet power balance 

objective. The reason is that charge and discharge pattern of 

these storages are more influenced by energy sale and purchase 

price pattern in normal operation mode in order to increase VPP 

profit, while in islanded mode this becomes the second priority 

since rigid network operation objectives are of higher 

importance in this condition. It should be noted that thermal 

storages does not experience these high fluctuations; since there 

are no thermal power transmission lines between existing 

regions and in this case study, most changes of thermal storages 

are only influenced by variation curve of CHP plants’ generated 

thermal power. Regarding that this case study simulates special 

operation condition, which may occur rarely during year, 10% 

tolerance is allowable in storage devices’ charge and discharge 

equality objective during the operation time.  

 

 
Fig. 13 Electrical storage charge and discharge state for 24 hour 

ahead (case study 2) 

 

 
Fig. 14 Thermal storage charge and discharge state for 24 hour ahead (case 

study 2) 

 

Fig. 15 shows boiler generated power. It is indicated that 

boiler power pattern highly conforms to thermal load demand. 

This is well observable in region two boilers. It should be noted 

that in some regions (such as region five), due to high CHP unit 

capacity located in this region associated with thermal storage, 

the main part of thermal load is fed by these two elements and 

aforementioned point would not be applied for this case. Power 

flow in transmission lines is shown in Fig. 16. Current in line 

ended to upstream network is zero due to an event, which is the 

reason of network being islanded. Compared to normal 

operation, it is shown that in islanded mode, current flow in 

most of the lines is decreased at most of the hours. This was 

totally expected due to VPPs disconnection from upstream 

network and inability of power exchange at peak hours to meet 

a part of demand and at low market price hours to charge 

batteries. Fig. 17 shows scheduled vehicle numbers for 24 hour 

ahead operation. Fig. 18 shows income, cost and benefit from 

operation of all VPPs. It is indicated that cost and income 

pattern is so similar to case study 1.  

  

 
Fig. 15 Generated thermal power by boiler (case study 2) 

 

 
Fig. 16 Power flowing in interface transmission lines between the regions 

(case study 2) 

 

Although, hourly values of these parameters have experienced 

some variations, transmission line disconnection from utility 

would not have remarkable effect on how financial transactions 

are done. One of the reasons is that sale and purchase price in 

VPP point of common coupling to adjacent units does not differ 

in this case study with previous one and only limitations are 

power shortage supply and high load shedding costs. It is shown 

that operation costs are also more than first case study; since 

more use of fuel in order to generate more power causes more 

operation cost. As shown, in this case study too fewer vehicles 

have been utilized compared to previous one. Clearly, its reason 

is decrease in network capacity for exchange with upstream 

network. In this condition of VPP scheduling and operation, 

regarding Table 6, mathematical expectation for resulted 

income reaches to about -704 dollars which is 30% lower than 

non-islanded operation state. It is certain that in normal 

operation, due to sale and purchase possibility with upstream 

network at hours when energy purchase price is low or when 

energy price is high, transaction with market will result in more 

profit for system operators. As shown, due to more boiler and 

CHP utilization, operation costs increase, while due to surplus 

power sales possibility to upstream network, incomes increase. 

It should be noted that, in islanded operation mode, since all 

regions have similar format, power shortage or surplus is almost 
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similar for all regions; therefore, either in power shortage or 

power surplus condition, reaching the most optimal operation 

condition is not possible by only exchanging power with 

adjacent regions, and this condition finally results in more 

operation cost. Comparing Table 6 and Table 8 shows that, by 

changing the case study, operation cost decreases from -

534.745 in normal conditions to -704.832 in islanded operation. 

Accumulative benefit curve for two cases studies are shown in 

Fig. 19. 

 

 

Fig. 17 Electric vehicle numbers in operation time horizon (case study 2) 

 

Fig. 18 LSVPP financial transaction in 24 hour ahead (case study 2) 
 

Table 6. Final operation benefit expectation calculation in islanded operation 

(case study 2) 

 Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Scenario 
5 

Profit [$] -707.17 -666.85 -718.93 -653.70 -799.58 

Probability 0.6 0.15 0.15 0.05 0.05 

Expected 
profit 

-704.832 

 

 
Fig. 19 Accumulative benefit cash flows. 

V. CONCLUSION 

In this paper, an optimal scheduling for LSVPP including 

multiple regions was presented. Small VPPs were assumed 

similar and connected to each other via transmission lines, 

while the last unit was connected to upstream distribution 

network substation. Each unit had RESs, storages (thermal and 

electrical), CHPs and parking lot. The objective function of 

network operation aimed at maximizing total VPPs benefit as 

well as meeting thermal and electrical demand. Optimization 

was done by an evolutionary algorithm and electrical load 

uncertainty was modeled by scenarios based on discrete 

probability distribution and mathematical expectation, while 

vehicle behavior uncertainty was modeled using Monte Carlo 

simulation. Two case studies, normal operation and islanded 

operation, were considered and state of each element in VPP 

were presented and analyzed via their performance curves in a 

24 hour day-ahead period. It was shown that taking into account 

load uncertainty compared to basic case, decreased costs, while 

islanded operation caused increase in system operation costs. It 

should also be noted that islanded operation occurred only in 

rare and special cases and in short periods. 
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