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Abstract— Due to the non-linearity and large dimensions of 

permanent magnet motor optimization, the use of metaheuristic 

methods such as GA, PSO, etc. would not be the most appropriate 

method especially if the fitness assessment is done by a time-

consuming solver such as finite element analysis (FEA). The FEA, 

which is widely used by most researchers, requires a lot of time 

and space and leads to huge computational costs. On the other 

hand, the accuracy of approximate analytical models is not 

sufficient for high-dimensional optimization tasks. To overcome 

these problems, a new space reduction optimization method is 

developed and presented in this paper. The proposed method 

gradually shrinks the search space and approaches an interesting 

subspace so that the wide variable space becomes smaller. As a 

result, FEA modeling accuracy is achieved as well as 

computational cost reductions. To validate the method, the design 

optimization is performed on a 2004 Toyota Prius Interior 

Permanent Magnet (IPM) motor. The results are compared with 

other optimization algorithms in terms of accuracy and number of 

performance evaluations. The comparison results show the 

superiority of the proposed algorithm, which can be a desirable 

alternative to industrial optimization tasks that necessarily 

require the least number of function evaluations. 

 

Index Terms— Design Optimization, Space Reduction 

Technique, Problem Dependent Optimization (PDO), Finite 

Element Analysis (FEA), Interior Permanent Magnet (IPM). 
 

I.  INTRODUCTION 

esign optimization of industrial appliances is divided into 

two categories based on the type of model solution. In the 

first part, analytical models are used to solve the problem, 

which may not be the best representation. Most optimization 

tasks in these cases are performed with meta-heuristic 

algorithms. These analytical models are less accurate and are 

not supported for electromagnetic devices due to nonlinear 

behavior. The second part of the research uses numerical 

modeling such as finite element analysis (FEA) which is time-

consuming. Therefore, meta-heuristics will not be a good 

choice. Instead, heuristic methods (problem-dependent 

optimization) are better benchmarks for such applications, 

especially for optimizing FEA paired design. 
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The design of electromagnetic devices is an industrial 

engineering subject in which both meta-heuristic and heuristic 

methods are proposed and studied for various industrial 

applications. The optimal design of permanent magnet (PM) 

machines is one of the controversial topics in electromagnetic 

design in which the need for efficient optimization algorithms 

is necessarily felt [1] - [2]. 

Based on the above discussion, the first part of the study uses 

meta-heuristic optimization algorithms to optimize the 

permanent magnet motor in which the problem is solved with 

analytical models. For example, Ref [3] used a hybrid multi-

objective design optimization for a permanent magnet motor, 

which is an optimization algorithm based on the artificial bee 

colony technique (ABC), Strength Pareto Evolutionary 

Algorithm (SPEA2), and Differential Evolution Strategy (DE). 

In another study [4], a multi-objective technique was performed 

on an interior PM motor in which the efficiency, volume, and 

cost of the motor were considered as a fitness function. Then 

the best solutions are obtained as Pareto-front and the k-means 

clustering algorithm is used to extract the final solutions. In Ref 

[5], the design optimization of an interior v type PMSM is 

presented to find all local and global optimizations. The 

objective functions of the research are to minimize the total 

weight and losses of the motor and mechanical, thermal, and 

magnetic constraints. In another study [6], the design and 

validation of a PM motor were performed through an analytical 

method based on the conformal mapping technique. In Ref [7], 

the multi-objective design optimization is performed by the 

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) for a 

surface PM motor, which aims to reduce the clamping torque 

and stabilize the output torque. Ref [8] presents a new genetic 

algorithm combined with a proposed sub-domain model to 

improve performance for surface PMSM to optimize magnetic 

field distribution, cost, and motor efficiency. A saturated 

surface-mounted PMSM is optimally designed through a multi-

objective approach [9]. Different PMSM rotor structures are 

investigated using a new multi-objective optimization 

technique [10]. A hybrid differential evolution algorithm has 

been proposed for the optimal design of high-speed PMSM as 

an electric vehicle propulsion system [11]. The design 

optimization of a permanent magnet synchronous motor with 

hybrid permanent magnets has been proposed by considering 
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irreversible demagnetization [12]. A new algorithm based on 

particle swarm optimization is proposed along with an adaptive 

direct search method to optimize the design of a permanent 

magnet synchronous motor [13].  

Many of the above researches have encountered problems in 

modeling the nonlinear behavior of PM motors, including sub-

domain model, conformal mapping, or a modified magnetic 

equivalent circuit (MEC) method. The FEA, on the other hand, 

can easily consider these nonlinearities, which is the subject of 

the second part of the research. This research relates to 

problem-dependent optimization (PDO) methods that have 

been customized for specific applications. In these problems, 

instead of analytical modeling, numerical modeling such as 

finite element analysis (FEA) is used. As a result, due to the 

higher accuracy of FEA modeling compared to analytical 

modeling, more accurate solutions will be produced. However, 

the FEA is time-consuming in limiting the number of function 

evaluations (NFEs) in the optimization process. Therefore, the 

main obstacle to using FEA as a solution to the design 

optimization task model is limited NFE. There are ways to 

overcome this deficiency in the literature. Multilevel 

optimization is one of the methods used to optimize the design 

of electromagnetic devices [14] - [15]. Two types of variables 

called upper-level variables and the lower-level variables are 

involved in these issues. The problem is then solved for each 

set of design variables, so NFE is effectively reduced. Another 

approach in this field is the use of space mapping methods to 

optimize the design of electromagnetic devices [16] - [18]. 

Space mapping involves a very fast coarse model with a time-

consuming fine model. As a result, direct optimization and time 

on the good model are avoided. In other words, the optimization 

is done in a coarse space and then it is mapped into a fine space. 

Surrogate models are also one of the new optimization methods 

in the optimal design of electromagnetic devices [19] - [23]. In 

these methods, an approximate model is made based on 

sampling. This method mimics the behavior of a simulation 

model, which leads to faster performance evaluation. 

Sequential optimization methods are also used in optimizing the 

design of electromagnetic devices [24] - [27]. In these methods, 

the search space is gradually reduced to prevent performance 

evaluation in the unnecessary search space. Therefore, the NFE 

is significantly reduced which is suitable for problems with high 

computational costs. 

The main difference between meta-heuristic and PDO 

methods is that PDOs are customized and developed to be used 

in a particular problem, while meta-heuristics cover a wide 

range of applications. This limits meta-heuristics performance 

and makes them less efficient in certain areas that require 

special consideration. Optimizing the design of electric 

machines with finite element analysis necessitates the 

development of a suitable and efficient optimization algorithm 

with the least number of performance evaluations. 

This paper proposes a space reduction technique to be used 

in FEA-based design optimization. The proposed technique 

gradually shrinks the search space and approaches an 

interesting subspace in which it is optimally placed. This 

algorithm can be used to optimize the design of electromagnetic 

devices. To demonstrate the efficiency of the proposed 

algorithm, it has been used for an electromagnetic design task, 

namely the optimal design of the 2004 Toyota Prius IPM motor. 

The rest of the article is organized as follows. 

In the second part, the proposed method of reducing 

space is discussed and explained. Section III presents 

the IPM motor optimization process while the 

optimization results are presented in Section IV. Finally, 

the article concludes in Section V. 

II.  DESCRIPTION OF THE PROPOSED METHOD 

This section describes the proposed method. First of all, each 

optimization algorithm is evaluated based on three indicators: 

• Accuracy: obtain a solution with precision 

• Robustness: cover a wide range of problems in different 

fields 

• Efficiency: require the least computer time or storage.  

These features are often in contrast. For example, a robust 

method is slow because it covers a wide range of problems. 

There must be an engineering balance between convergence 

rate and storage needs, between strength and speed, etc. [28] - 

[30]. 

In the proposed algorithm, finite element analysis is used as 

the model solution, which is more accurate and the concept of 

space reduction is used to reduce NFE. In design optimization 

work, which is accompanied by finite element analysis, the 

most important indicator after accuracy is the efficiency of the 

algorithm. In these cases, the algorithms do not need to be 

robust, but we need to get the optimal response in the least 

computer time or several function evaluations (NFEs). Space 

reduction methods are among the problem-dependent 

optimization techniques that are suitable for optimizing the 

design of electric machines with FEA. 

The search space in the design of electric cars is very large, 

which includes all possible solutions. However, the optimal 

solution lies in a small sub-space (interesting sub-space). The 

goal of space reduction methods is to find an interesting 

subspace and avoid evaluating performance outside of it. This 

in turn can drastically reduce the number of performance 

evaluations. 

In the following sections, the process of the proposed 

algorithm is presented. 

A.  Basic Methodology 

This algorithm aims to find the minimum of the function 

which is written in the following generic form: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖(𝑥), 𝑥 ∈ ℝ     (𝑖 = 1,2, … , 𝑀)                          (1) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ𝑗(𝑥) = 0,      (𝑗 = 1,2, … , 𝐽)  

𝑔
𝑘
(𝑥) ≤ 0,    (𝑘 = 1,2, … , 𝐾)                    

Where 𝑓𝑖(𝑥), ℎ𝑗(𝑥) and 𝑔
𝑘
(𝑥) are functions of the problem 

input vector 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁𝑣𝑎𝑟
)                         (2) 

This method divides the search space into securely organized 

subspaces and evaluates the objective function in each. For a 

simple description of this method, we consider a bivariate 

problem. The search space is divided into N sections (N = 4 for 

a bivariate problem). In general, a permutation matrix is formed 

that includes all possible members. The fit function is then 

evaluated at the center of these N segments, and the section with 

the best fit is extracted (Fig. 1(a)). After that, the range of design 
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variables is updated according to the following formula: 

𝑥𝑚𝑖𝑛
𝑡+1 = 𝑥𝑜𝑝𝑡

𝑡 − ((
𝑘𝑑𝑖𝑣

2
) × 𝑠𝑡𝑒𝑝𝑥𝑡)             (3) 

𝑥𝑚𝑎𝑥
𝑡+1 = 𝑥𝑜𝑝𝑡

𝑡 + ((
𝑘𝑑𝑖𝑣

2
) × 𝑠𝑡𝑒𝑝𝑥𝑡)            (4) 

where kdiv is the division factor of variables, xopt the point 

corresponding to the best fitness, xmin the minimum of the 

variable range, xmax the maximum of the variable range. 

Besides, stepx is defined as: 

𝑠𝑡𝑒𝑝𝑥𝑡 =
(𝑥𝑚𝑎𝑥

𝑡−𝑥𝑚𝑖𝑛
𝑡)

𝑘𝑑𝑖𝑣+1
              (5) 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. The procedure of space reduction in the proposed Algorithm (a) Stage  
1  (b) Stage 2  (c) Final Stage 

 

As a result, depending on the value of kdiv, the search space 

is reduced. This process is repeated until the optimal point is 

found. Fig. 1(b) shows the second step of the algorithm and the 

whole steps of the algorithm are shown in Fig. 1. (c). The 

method flow diagram is shown in Fig. 2. 

Table I gives the results of the algorithm for some well-

known optimization benchmarks. If each design variable is 

divided by a factor kdiv, the NFE can be calculated as follow: 

𝑁𝐹𝐸 = 𝑖𝑡𝑒𝑟 × (𝑘𝑑𝑖𝑣
𝑁𝑣𝑎𝑟)                 (6) 

Where Nvar is the number of variables and iter the stages of the 

algorithm. If the accuracy has to be enhanced, the factor kdiv and 

iter should be increased which in turn increases the NFE and 

computational cost. Table II compares the influence of these 

two factors on the accuracy and NFE of a test function i.e. 

McCormick benchmark. As a result, it can be cited for 

complicated functions, it is appropriate to increase kdiv. In 

complicated functions, there are multiple extremums and 

increasing kdiv ensures that the algorithm covers most of the 

search space. The parameter iter is related to the accuracy of the 

solution obtained. In general, these parameters should be 

selected based on the required performance and accuracy. 

TABLE I 
Results of the Algorithm for Optimization Benchmarks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2.  Flowchart of the proposed Algorithm 
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Benchmark Optimal Values by the 

proposed method 

NFE Desired 

value 

Sphere F(0.001,0.001)=2e-6 52 F(0,0)=0 

Booth F(1.01,3.01)=0.003 52 F(1,3)=0 

Matyas F(-0.01,-0.01)=5.7e-6 44 F(0,0)=0 

Himmelblau F(2.999,2.007)=7.3e-4 56 F(3,2)=0 

Three-hump 

camel 

F(0.006,-0.006)=7.19e-5 44 F(0,0)=0 

Ackley F(0,0)=0.0001 52 F(0,0)=0 

Goldstein-

price 

F(0.004,-1.01)=3.05 44 F(0,-1)=3 
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Generate Population 

Evaluate Function and 
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TABLEII 
 Results of the Algorithm for Different Kdiv and iter in McCormick 

Benchmark 

B.  Generalization of the method for high-variable problems 

As equation (6) suggests, the NFE would rise drastically if 

the Nvar is increased beyond a certain value. In practical 

applications such as the optimal design of IPM motor, NFE 

climbs up the 1000 evaluations for Nvar>6. This amount of NFE 

is not feasible for FEA-based design optimizations. As a result, 

some modifications have to be made to make use of the method 

for high-variable problems. Two techniques are proposed in this 

algorithm as follows. 

(2.1), Scheme-LHS 

The first method is to reduce permutation matrix elements in 

such a way that their accuracy is not affected. To do this, a 

powerful sampling method is used, i.e. the Latin Hypercube 

(LHS) sampling. In this context, a certain number of possible 

compounds and not all of them are considered. Although this 

may lead to inaccurate results, LHS is used to ensure more 

search space coverage. The LHS provides a uniform 

distribution of data. As a result, NFE is reduced while accuracy 

is not significantly affected. 

(2.2), Scheme-Fibonacci 

The second technique is to reduce the number of evaluations 

per step of the algorithm based on the Fibonacci series. In this 

method, in the first stage, all possible elements of the 

permutation matrix are evaluated and in the next stages, the 

number of evaluations is reduced step by step. Part of the 

Fibonacci series is {1,1,2,3,5,5,8,13,21,34,55,…..} The 

declining trend is inspired by the series leading to the following 

formula for the number of populations at each stage of the 

optimization loop: 

𝑁𝑝𝑜𝑝 = 𝑓𝑖𝑥 {(
𝑘𝑑𝑖𝑣

𝑁𝑣𝑎𝑟

100
) × (145.4𝑒(−0.4979×𝑖𝑡𝑒𝑟) + 0.9572)}           (7)

                       

Where the coefficients are obtained by curve fitting. 

III.  OPTIMIZATION PROCESS OF THE 2004 PRIUS IPM MOTOR 

USING THE PROPOSED ALGORITHM 

The proposed algorithm is applied to design optimization of 

a specific electromagnetic device i.e. Prius IPM motor. 

Fig. 3 shows the optimization workflow using the proposed 

algorithm. To pair, design optimization must be related to finite 

element analysis, MATLAB, and Ansys Maxwell must be 

relevant. The script is written in MATLAB and Ansys Maxwell 

solves the solutions. The solutions are then returned to 

optimization to generate the next stage population. 

 

Fig. 3.  Workflow of the optimization 

(3.1), IPM motor description 

Fig. 3 shows the topology of the IPM motor in which 

permanent V-shaped magnets are placed in the rotor. The 

specifications of the mentioned engine are given in Table III. 

As shown in Fig. 4, five design variables are selected. The 

maximum and minimum ranges of these five design variables 

are given in Table IV. 

 

Fig. 4.  The topology of the 2004 Prius IPM motor  

 
TABLE III 

Specification of the 2004 Prius IPM Motor 

 
 
 

 

 

kdiv 2 3 3 4 

iter 10 6 7 5 

NFE 40 54 63 80 

Optima -1.9130 -1.9121 -1.9131 -1.9132 

Parameter Value 

Stator outer/inner radius (mm) 134.6/80.95 

Rotor outer/inner radius (mm) 80.2/55.32 

Stack length (mm) 83.82 

Rated phase current peak value (A) 250 

Maximum current (A) 400 

Rated speed (rpm) 1500 

Rated torque (Nm) 305 

Torque Pulsation (%) 26 

Maximum torque (Nm) 400 

Br (T) at 50 _C 1.19 

Hc (kA/m) -920 

Relative permeability (μr) 1.03 
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TABLE IV 

Maximum and Minimum Ranges of the Design Variables 

 

The objective function of the optimization is to minimize the 

permanent magnet volume 

𝐹 = 𝑚𝑖𝑛 {𝑉𝑝𝑚}                (8) 

Where the average torque and torque ripple constraints have to 

be met 

𝑇𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛 ≤ 𝑇𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛,𝑏𝑎𝑠𝑒 , 𝑇𝑎𝑣𝑔 ≥ 𝑇𝑎𝑣𝑔,𝑏𝑎𝑠𝑒     (9) 

(3.2), Finite element modeling 

The step-by-step finite element method is the most accurate 

tool available for analyzing electric machines. In this paper, 

Ansys Maxwell is used as the FE solvent. To reduce the 

simulation time, an exchange is made between the computation 

time and the reliability of the results. As a result, an average 

density of meshes and an average time step are chosen for the 

simulation. Another factor that affects the simulation results is 

the magnetic saturation of the ferromagnetic core. The 

simulation time for each run is about 60 seconds. The 

simulation results are presented in the next section along with 

the optimal structure. 

IV.  OPTIMIZATION RESULTS AND DISCUSSION 

In this section, optimization results are obtained for two 

scenarios. In the first scenario, a 5-variable optimization 

problem is considered and for the second scenario, an 8-

variable problem is considered. The first scenario is optimized 

with the initially proposed method and the second scenario is 

applied for Scheme-LHS and Scheme-Fibonacci. Both 

scenarios are compared and approved by GA. 

(4.1), Scenario 1 

Optimization is performed for the first 5 variables of Table 

IV. The next three variables are fixed. The volume of permanent 

motor magnets in 139095 mm3 is obtained after 480 function 

evaluations with acceptable accuracy. Relative tolerance of 

response 0.01 was selected. The trend of the value of the 

objective function in front of each step of the algorithm, i.e. 

iteration is shown in Fig. 5. The optimal dimensions and 

performance characteristics of the IPM motor are obtained and 

then the proposed algorithm is compared with GA. The 

comparison results are given in Table V. It is shown that both 

algorithms converge to the same optimal response. However, 

the proposed method required only 480 NFE while GA required 

2500 NFE to achieve the optimal response. 

Fig. 6 and 7 show the optimal motor flux line and 

flux density in 2D FEA software. Fig. 8 shows the flux 

connection of a motor phase. The output torque, which 

consists of electromagnetic torque and reluctance 

torque, is shown in Fig 9. 

 
Fig. 5. The trend of objective function versus iteration 

 

Fig. 6. Flux lines diagram of the optimal motor 

 
Fig. 7. Flux density diagram of the optimal motor 

(4.2), Scenario 2 

In this scenario, all 8 variables in Table IV are considered 

for optimization. Due to a large number of variables, Scheme-

LHS and Scheme-Fibonacci are used and then compared with 

the original proposed method and GA. According to the relative 

tolerance of optimization, Scheme-LHS and Scheme-Fibonacci 

require 750 and 593 estimates, respectively (Table VI). This 

evaluation value is 2500 for the proposed base method and 8000 

for the GA. The obtained results show the acceptable accuracy 

of the proposed method for high-variable optimization 

problems. 
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LPM (mm) 12 18 

HPM (mm) 5 8 

DR (mm) 6 8 

DB (mm) 3 5 

n/2 (deg) 55 80 

Stator outer radius (mm) 120 160 

Stator inner radius (mm) 70 90 

Stack length (mm) 70 95 
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Fig. 8. Flux linkage waveform of the optimal motor 

 
Fig. 9. The output torque of the optimal motor

 

TABLE V 
Comparison of the Proposed Method and GA for Scenario 1 

 

 
 

 

 

 
TABLE VI 

Comparison of the Scheme-LHS, Scheme-Fibonacci, Basic Proposed Method and GA for Scenario 2 

Computer used: Intel ® CPU (2.2 GHz, 5 cores) and 8 GB RAM  

V.  CONCLUSION 

In this paper, a new optimization method based on the space 

reduction technique is proposed to optimize the design of a 

solved PMSM with finite element analysis. The proposed 

algorithm gradually reduced the search space and approaches to 

an interesting subspace so that many non-executable variable 

combinations were rejected. This method was successfully 

tested in the Prius 2004 IPM motor and compared with other 

optimization algorithms such as GA in terms of accuracy and 

number of performance evaluations. The following results are 

obtained: 

• Successful implementation of the proposed algorithm for 

optimizing IPM motor design with FEA to gain higher 

accuracy. 

• Superiority of the proposed algorithm compared with 

well-known meta-heuristic algorithms such as GA in terms of 

optimization algorithm efficiency  

• Generalization of the proposed algorithm for high-variable 

optimization problems which was verified by two practical 

techniques 

• Generality of the proposed method for other machine types 

especially industrial optimization tasks which require the least 

number of function evaluations. 

Parameter\Method GA Proposed method 

Rated torque (Nm) 308 307 

Torque Pulsation (%) 25 25.5 

LPM (mm) 17.2 17.15 

HPM (mm) 6.03 6.04 

DR (mm) 7.45 7.44 

DB (mm) 3.9 3.92 

n/2 (deg) 68.4 68.5 

NFE 2500 480 

CPU time (h) 40 8 

Parameter\Method Scheme-LHS Scheme-Fibonacci Proposed method GA 

Rated torque (Nm) 308.2 307.5 308 308 

Torque Pulsation (%) 25.1 25.4 25 25 

LPM (mm) 17.2 17.1 17.3 17.2 

HPM (mm) 6.03 6.05 6.02 6.03 

DR (mm) 7.45 7.35 7.4 7.41 

DB (mm) 3.9 4 3.95 3.93 

n/2 (deg) 68.4 69 68.2 69.1 

Stator outer radius (mm) 135 134.5 135.1 134.8 

Stator inner radius (mm) 81.5 80.7 81.2 81.3 

Stack length (mm) 83.9 84.4 84.1 83.8 

NFE 750 593 2500 8000 

Time (h) 12.5 10 40 133 
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