
Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE)                               17 
 

 

Abstract-- 3D mesh simplification is an important challenge in 

various fields. While different simplification methods have been 

proposed in recent years, the focus has shifted to keeping 

properties such as ridges and valleys along with mesh 

simplification. While most of the proposed models have used 

curvature, some challenges exist, such as the computational 

complexity and sensitivity to the neighborhood size. The latter can 

be solved by averaging several neighborhoods. This paper 

proposes a simple yet fast method with less sensitivity to the 

neighborhood size. To this end, we use the normal vector and the 

parameters of a probability distribution of its variations to detect 

the elevations, depressions (geometrical changes), and curve parts. 

We combine this method with the Quadric Error Metric (QEM) 

method to produce a hybrid method for 3D mesh simplification, 

preserving its elevations and depressions. Evaluation results show 

that our method has a lower error than the other methods.   

 

 
Index Terms-- 3D Mesh simplification, Normal vector, 

Curvature, Improvement, Sensitivity.  

I.  INTRODUCTION 

     owadays, 3D models are used in various fields, such as 

     virtual reality (VR) [1], heterogeneous materials [2], and 

Infrastructural Work [3]. Different high complexity methods 

are used to provide 3D models in each field. For example, in 

some computer games, many complicated mathematical 

calculations are necessary to have an accurate collision 

detection of some objects. These calculations can be able to 

perform on less detailed models. Therefore, a suitable 

simplification method is required to reduce the model 

complexity. In general, simplification methods decrease the 

calculations, memory usage, and volume of the transmitted data 

while keeping the quality of the results. Different researchers 

have proposed different simplification methods [4-28]. These 

methods can be categorized into two general groups: sensitive 

to feature and insensitive to feature methods. While the 

sensitive feature methods consider special priorities for 

different features of the model, the insensitive feature methods 

act equally on all parts of the model without special attention to 
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different features. The latter only considers an error 

measurement function to control the operation and keeps the 

simplified model similar to the reference. These methods 

maintain special properties, like curvature, by directing and 

controlling operations during simplification. The basic 

algorithm of both categories is similar, but the first category 

models act somewhat intelligently to increase or decrease the 

level of simplification. One of the solutions to control the level 

of simplification is the detection of the important regions and 

saliency in two-dimensional images, which generally state that 

regions with lots of changes in light intensity are more 

important for the human visual system. However, the light 

intensity is substituted by the geometrical data in 3D models. 

So, regions with lots of geometrical changes are more important 

from the point of view of the human visual system. This way, 

finding the correlation of several features with regions selected 

by humans is used to find the important regions in 3D models 

[18]. The curvature feature is the most important among other 

features. This feature is usually used for determining 

geometrical changes. In line with this, in this paper, we 

investigate the curvature problem and propose a simplification 

method for determining the regions of elevation and depression 

by using the normal vector of the vertex. 

The rest of this paper is organized as follows: In section 2, 

normal diversity expression is introduced. Related work and the 

proposed method are presented in sections 3 and 4, respectively. 

Section 5 demonstrates the experimental results of the proposed 

method. Finally, the conclusions are drawn in section 6.  

II.  NORMAL DIVERSITY EXPRESSION 

We aim to search the regions that are more visually 

important and assist in reducing the damage to the sensitive 

mesh regions. There are several methods to detect the 

considered regions. The most common way among them is 

based on the curvature [16], in which the amount of geometrical 

changes in a region is the criterion to measure the region’s 

importance. This procedure comes from 2D image processing, 

where more light intensity changes may be more important to 
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the eyes. This way, we first study the curvature-based methods 

and the corresponding concepts.   

The curvature is one of the geometrical properties 

representing a deviation from a flat surface in a specific 

direction. This is a local feature and varies for different points 

of the object. From a mathematical point of view, for a 2D curve 

F(t) (that is, in parametric form), the curvature of the point K(t) 

is equal to the ratio of angle changes of the normal vector of the 

curve (between the considered point and a point in its vicinity) 

to over the curve length between two points (Fig. 1). It can be 

calculated as (1): 

𝐹(𝑡) =  𝑔(𝑡) ∗ 𝑖 + ℎ(𝑡) ∗  𝑗                                                     (1) 

𝑇(𝑡) =  
𝐹′(𝑡)

|𝐹(𝑡)|
 

𝐾(𝑡) =  
𝑇′(𝑡)

|𝐹′(𝑡)|
 

Where 𝑔(𝑡) and ℎ(𝑡) are the parametric functions of i and j.   

𝐹′(t) is the parametric derivation, T(t) is the tangent vector on 

the curve, and 𝑇′(t) is the derivation of the curve. For 3D 

surfaces, the surface is cut in one direction, and the curvature is 

calculated for the resulting curve. The results are obtained in 

different numbers in different directions. The smallest and 

biggest numbers are called min and max curvature, 

respectively.  

 

Fig.  1. The curve of F(t) and angle changes of a normal vector. 

Two common methods are used to calculate curvature in the 

mesh where space is discrete: The first group includes methods 

that initially estimate the surface using a continuous function, 

then using the second derivation to compute the curvature. The 

second group estimates the second derivation and curvature 

directly without the continuous function estimation and using 

the geometrical data of the mesh such as face normal vector or 

face angle. One of the advantages of the second group is high 

performance. However, they also have larger errors. Curvature 

calculation needs a neighborhood for each point. The curvature 

determines the deflection amount of the surface at each point, 

but we are searching for elevation and depression in an area.  

Averaging in a ring is usually used to achieve this result. The 

size of the ring is important. A smaller ring gives more details, 

while more local and larger rings result in more global 

information. Determining the appropriate ring size also affects 

the correct determination of saliency. So, in addition to the 

neighborhood of the curvature calculation, the averaging also 

needs the neighborhood rings. 

III.  RELATED WORK 

One well-known proposed work in mesh saliency is [16] where 

the mean curvature is calculated for each point using a 

neighborhood (N(v,σ)). Then, a weighted mean for each vertex 

is calculated in another neighborhood (G(ϑ,σ)) to reduce the 

effect of the size of N(v,σ). The weights are calculated based 

on a Gaussian neighborhood centered on the considered vertex. 

After that, two neighborhoods (G(ϑ,σ)) with a little difference 

in size are selected and the curvature is subtracted to calculate 

the saliency. The variance or width of this Gaussian 

neighborhood affects saliency results. The larger neighborhood 

results in more continuous regions as shown in Fig. 2. Finally, 

to solve this problem, saliency is calculated in different sizes 

and after normalizing the results, they are added to each other 

as shown in Fig. 2. Therefore, determining the elevation and 

depression regions using curvature is both costly and time-

consuming and also very sensitive to the size of neighborhoods 

at different steps. Changes in the neighborhood size can cause 

serious differences in the results. To tackle these challenges and 

consider the curvature behavior, we propose a method using a 

normal vector of vertices to reduce the challenges and improve 

the results. The proposed method attempts to determine regions 

with lots of geometrical changes at a low cost and without 

complex calculations. These regions should be continuous as 

possible and the results must be approximately consistent, with 

minor parameter changes that can be used in different meshes. 

Vertex normal vectors can provide the necessary solution.  

The normal vector is one of the vertex properties in the mesh. 

Its most important application is facing angle identification for 

lighting in computer graphics. As shown in Fig. 3, the normal 

vector has several directions in the regions with curvature. This 

property helps to use a normal vector instead of curvature to 

identify the change areas. This will tackle the challenge of the 

computational complexity of the curvature. However, the 

challenge of sensitivity to the neighborhood size will remain. 

The curvature computes the amount of deflection that is strong 

or weak according to the speed of the surface change. It seems 

this causes curvature changes by changing the neighborhood 

because there are different changes in the mesh. However, we 

do not care about the intensity of changes for simplification. As 

Fig. 3 shows, the normal vectors have different directions where 

there are geometrical changes. As with other natural 

phenomena, these changes clearly have a distribution 

probability. We don’t know this distribution, but a general 

distribution can be supposed. Most natural phenomena follow a 

normal or Gaussian distribution. Thus, we assumed that the 

distribution is Gaussian. Usually, there are different changes in 

the mesh surface, so the pattern of direction change is not the 

same everywhere. We are going to estimate the mean and 
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variance of direction changes statistically. Therefore, we 

calculate the mean and variance for each vertex in a 

neighborhood, including some rings, with the following 

equations: 

𝑚(𝑣) =
∑ 𝑛𝑖

𝑁
𝑖=1

𝑁
                                                               (2) 

𝑠(𝑣) =
∑ (𝑛𝑖−𝑚(𝑣))2𝑁

𝑖=1

𝑁
                                                   (3) 

where m(v) is the mean of normal vectors in the 

neighborhood of v and s(v) is the normal vector variance around 

the mean vector. N is the number of vertices in the 

neighborhood, and ni is the normal vector of the i-th vertex. It 

should be noted that the calculations are done separately in each 

dimension of 3D space. We aim to identify the direction of 

changes. As shown in Fig. 3, where the direction changes, there 

is diversity, and the intensity of the diversity represents the 

number of changes. Therefore, s(v) is directly proportional to 

the direction of changes. Each dimension of s(v) shows the 

diversity in that dimension on the mesh. So, we can use the 

magnitude of s(v) as the criterion to detect the number of 

geometrical changes. Using the normal vector and the 

probability distribution of the normal vector direction changes 

(because of less sensitivity to the surface changes) to find the 

regions with geometrical changes that lead to more continuous 

output without using the complex method as [16]. Fig. 4 shows 

the differences between the proposed model and the model of 

[16]. It should be noticed that normal vector information of 

vertices usually is stored with mesh files, so it is not required to 

calculate it. If there was no mesh data, calculating a normal 

vector is not somewhat difficult, and because of the elevation 

and depression, the finding procedure is based on the 

probability distribution. Changing the neighborhood size 

doesn’t change the results until the pattern of the direction 

change does not vary.  

IV.  THE PROPOSED METHOD 

The basic purpose of this work is mesh simplification. As 

mentioned before, we aim to decrease the changes in the 

important areas during mesh simplification. Since human eyes 

are more sensitive to areas with changes, we tend to change 

these areas less than the others. The way to identify changing 

areas has been explained in section II.  . In the previous steps, 

the obtained weight for each vertex represents the geometrical 

changes around the vertex. Now, we are going to use this weight 

for simplification. 

Furthermore, an error measurement or cost function in most 

simplification algorithms controls the element selection for 

elimination and keeps the criterion small. Using the calculated 

weight in the error measurement of such algorithms allows 

more attention to the important areas. We combined our work 

with the method introduced in [4] First, we explain this method 

and combine our weight with it. The method in [4] is based on 

edge contraction. More concretely, in this method, vertex v is 

replaced by an edge (v1, v2) (Fig. 5). This algorithm follows 

the edges that lead to the minimum changes in the mesh. To this 

end, the cost is calculated for each contraction. 

The v could be anywhere between v1 and v2. Each point has 

a different cost. The minimum cost for v is selected by [4] The 

cost is the summation of the squared distances between v and 

the planes that meet v1 and v2. Here, the plane means the planes 

created by using the normal vector of each triangle met by the 

vertex and the coordinate of the vertex. The cost is updated after 

each contraction. After sorting, an edge with a minimum cost is 

removed, causing a minimum change in the shape at each step. 

This action has high computational complexity due to the 

duplicate calculations of distances. To deal with this challenge, 

[4] proposes a method, including a mathematically proof, which 

is led to the squared distance from vertex v to a plane p, as 

shown in (4). 

 d(v) = v 𝑘𝑝𝑣𝑇                                                                   (4) 

where kp is a matrix based on the coefficients of the plane 

equation, p and v are the considered points, and T is the 

transpose sign. Initially, kp is calculated for each triangle; then, 

the summation of kp corresponds to meeting triangles for each 

vertex calculated (Q). To calculate the distance from v to meet 

planes with v1 and v2, the specified Q are used as follows:   

C(v) = 𝑣(𝑄1 + 𝑄2)𝑣𝑇                                                 (5) 

𝑄𝑖 = ∑ 𝑘𝑝

𝑝 ∈𝑝𝑙𝑎𝑛𝑒𝑠 𝑜𝑓 𝑣𝑖

 

Fig.  3. Result of saliency detection [16] Results have been 
changed by scale changes. 

Fig.  2. The position of the normal vector at various locations 

of curve. 
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where C(v) is the cost of replacing vertex v to edge (v1, v2) and 

others, as in (4). In [4] for new vertex v, Q equals Q1+Q2, and 

recalculation is not required. Now, if we want to apply the 

considered weight to each vertex, we need to multiply the 

weight by (4), which needs the changing (4) and (5) to (6) and 

(7).  

 𝑑(𝑣) = 𝑤𝑣(v 𝑘𝑝𝑣𝑇) =  v (𝑤𝑣 𝑘𝑝)𝑣𝑇                                   (6) 

 C(v) = 𝑣(𝑤𝑄1 + 𝑤𝑄2)𝑣𝑇                                                     (7) 

 𝑤𝑄𝑖 =  𝑤𝑣 ∑ (𝑘𝑝)𝑝 ∈𝑝𝑙𝑎𝑛𝑒𝑠 𝑜𝑓 𝑣𝑖
 

where wv is our weight, other parameters are the same as (4) 

and (5). This way, we engaged the procedure’s importance in 

high change areas. To create more differences between the 

areas, we also add a nonlinear transformation as follows:   

𝑤𝑣=(𝜔𝑣)𝛾                                                                   (8) 

where ωv is the calculated weight in the last step and γ is an 

exponent to create nonlinear differences between low and high 

change areas. Fig. 6 shows an example of output where QEM 

had done the simplification with and without the calculated 

weights. 

 
Fig.  4. Top row- Identification of normal diversity for different neighborhoods. 

Bottom row- mean curvature results for different neighborhoods. The size of 

the neighborhood is determined based on the bounding box diameter. More red 
means more geometric. 

 
Fig.  5. Edge contraction. 

V.  EXPERIMENTAL RESULTS 

In this section, several experiments are done, and the results 

are analyzed. First, an experiment is done to find the appropriate 

value of γ and neighborhood size (d). After determining the 

appropriate values of these parameters, our results and QEM 

results are compared. Finally, the outputs of some well-known 

models are shown and compared. We performed these 

experiments with C++ and used the official implementation of 

QEM with a dataset provided by Princeton University for 

segmentation evaluation, including 380 models in 19 different 

classes. The average of the mean curvature is used as the 

comparison criterion. 

A.  Determining γ and d 

Both parameters, γ, and d, are directly related to the output; 

therefore, we changed each in an interval. By each change, the 

outputs for 100 identical models are obtained. The difference 

between the average mean curvature before and after 

simplification is considered the error of combination (γ, d). The 

neighborhood is considered based on a percentage of the 

diameter of the bounding box (Fig. 6). We change γ in [1 - 9] 

and d in [4-14] intervals. The best state is (5, 11), but it is not 

stable. Thus, to find an appropriate γ and d, each dimension's 

average is calculated separately according to the values of other 

dimensions (to understand error changes based on each 

parameter). The results are shown in Fig. 7. The minimum error 

occurs at 5 and 11 for γ and d, respectively, consistent with the 

previous results. 

B.  Comparison with QEM 

The results of this work are compared with the results of the 

QEM. In other words, this is a comparison between the QEM 

with and without a normal diversity. The γ and d are set to the 

results of 4.1. For comparison, the level of simplification is 

changed from 10% to 80% by step 10%. Each method is tested 

with 100 identical models. The error criterion is the average of 

mean curvature. Fig. 7 shows the results. It is observed that our 

method has a lower error. 

 

C.  Output  

In this section, we show our output for several models. The 

output of normal diversity is shown in Fig. 8, and the 

simplification output in Fig. 9 shows that the simplification 

level is not the same everywhere when using the weight of 

normal diversity. In the flat areas, there is more simplification 

level, and the number of triangles is less while their size is 

larger. In contrast, there are more triangles and smaller ones in 

the areas with more geometrical changes, causing a more 

accurate initial shape.  

Fig.  6. Differences of output with and without normal diversity weight. 

Number of initial triangles: 5084 rate of simplification: 70%, retained 
triangle: 1074. The specific area of the right side has more density. 
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Fig.  7. (a) Error change according to d and γ, (b) The mean of error of all neighborhoods based on gamma, (c) The mean of error of all Gammas 

based on neighborhood size, (d) The error of the two methods comparison. 

Fig.  8. Differences of output with and without normal diversity weight. Number of initial triangles: 5084 rate of simplification: 70%, retained triangle: 

1074.The specific area of the right side has more density. 

Fig.  9. Simplification output- normal diversity caused more simplification in the flat regions and less in the areas with geometrical changes. 

Simplification level is 80%. 
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VI.  CONCLUSION 

In this paper, we proposed a method to detect the elevations and 

depressions in the 3D mesh by using a normal vertex vector 

based on its probability distribution function, which does not 

have the problem of using curvature. We used the mean and 

variance of the normal distribution corresponding to the normal 

vector direction to detect the geometrical changes. Unlike the 

curvature, which usually suffers from high computational 

complexity and high sensitivity to the size of its neighborhoods, 

our method is faster and less sensitive, and its results are 

consistent with each other when neighborhood size is changed. 

We combined our results as a weight for each vertex with QEM. 

To this end, the calculated weight was multiplied by the initial 

errors of vertices. The simplification results show that the 

proposed method maintained the elevations, depressions 

(geometrical changes), and curve parts better than the general 

QEM. We used the average mean curvature as the error measure 

of elevations and depression changes. In future works, we 

would like to employ deep learning-based models in the field. 
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