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 
Abstract—One of the most common causes of vibration in 

rotating machines is the misalignment fault. The Motor Current 

Signature Analysis (MCSA) is an excellent method for the 

detection of the misalignment fault on those electric machines 

whose current signals are practically available. This paper aims to 

extend the application of the MCSA method to non-electric 

rotating systems for the detection of the misalignment fault 

between the driver machine and the driven machine. For this, a 

small brushless direct current (BLDC) motor was connected to the 

driver machine. Then, by using the Fast Fourier Transform and 

Wavelet Packet Transform the current signal of the BLDC motor 

was analyzed to detect the misalignment fault. In addition, a fault 

detection indicator was provided using the energy of the current 

signal. For the evaluation of the proposed method, an 

experimental setup was provided. The driver machine of the setup 

was an induction machine. So, it was possible to investigate the 

misalignment fault through both the BLDC motor and the 

induction motor. The results showed that the misalignment fault 

can be detected by the current signal of the BLDC motor as well 

as the current signal of the driver machine. 

 

Index Terms— Condition monitoring, Fault detection, Fast 

Fourier Transform, Wavelet packet transform. 

INTRODUCTION 

         otating machines have been found in widespread use in 

         power plants, steel plants, and petrochemicals. Thus, the 

performance of these large industries depends upon the correct 

and continuous operation of these rotating machines. Sudden 

and unplanned interruptions of these rotating machines will 

result in substantial financial losses. Therefore, it is essential to 

use condition-monitoring strategies for these systems to detect 

their faults in the early stages. Rotating systems are exposed to 

a variety of mechanical faults, including bearing faults, 

eccentricity, shaft bending, shaft cracking, unbalance, and 

misalignment. Among these faults, the misalignment fault is 

important, so more than 70% of vibrations of rotating systems 

are due to misalignment [1].  

 Misalignment occurs when there are more than two bearings 

in one shaft, such as when the two machines are connected via 

a coupling. Misalignment may be parallel, angular, or combined 

[2]. Different kinds of couplings including flexible and 
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universal couplings are used to prevent the deleterious effects 

of misalignment on the bearings.  

Vibration analysis is a famous method used to detect 

misalignment in rotating systems. In 1976 gibbons analysed the 

forces and torques of misaligned flexible couplings [3]. In a 

single run-down, Sinha et al. suggested a method to use the 

vibration signal to identify the unbalance and misalignment 

forces [4]. Through his research on cylinder and three-lobe 

journal bearings, Prabhu demonstrated that the second 

harmonic of the sound signal changes as the angular 

misalignment increases [5]. In their analytical model of a 

straightforward rotating system, Bahaloo et al. showed that the 

second harmonic of the system is the key characteristic that 

underlies both parallel and angular misalignments [6]. The 

angular misalignment of shafts in the gearbox was investigated 

by Chacon et al. using the acoustic emission method [7]. 

Additionally, there are numerous other studies that have 

employed acoustic emission for the identification of 

misalignment faults [8–10]. Sarkar et al. used finite element 

analysis for different types of misalignment on multi-disk rotors 

supported by oil-film bearings [11]. Xu and Marangoni 

developed a model for a motor-flexible coupling-rotor system 

and concluded that the angular misalignment causes the system 

to vibrate at even multiple frequencies of the motor speed [12]. 

Hili et al. proposed a finite element model for angular and 

parallel misalignments and concluded that for angular 

misalignment the first and second harmonics of the running 

frequency are dominant. In addition, they found that for parallel 

misalignment multiple harmonics of the running frequency are 

excited [13]. 

Besides the vibration analysis for the detection of 

misalignment in rotating machines, motor current signature 

analysis (MCSA) has also been developed in recent years by 

researchers due to its accessibility, low-price sensors, and its 

robustness to environmental conditions [14]. MCSA has been 

used by several research groups for the detection of mechanical 

faults and they have got acceptable results [15-19]. Daviu and 

Popaleny used a transient current signature analysis to diagnose 

mechanical faults such as misalignment [20]. 

Detection of misalignment by the MCSA method is only 

possible in rotating systems driven by electrical machines. 
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However, there are many rotating systems in large industries 

that do not work with electric power. Thus, the MCSA method 

for such systems is not applicable.  

In this paper, the application of MCSA on non-electric 

rotating systems using an externally mounted electric motor 

was investigated. A suitable candidate for the external electric 

motor is a BLDC motor due to its small size and its robustness. 

In this method, the BLDC motor was connected to the driver 

machine to rotate with the speed of the driver machine. 

Therefore, the BLDC motor acts as an electric generator and 

produces an electric current. Current sensors are used to 

measure this electric current. Because the BLDC motor senses 

the speed fluctuations of the driver machine, the output current 

of the BLDC motor demonstrates the probable faults of the 

system. To prevent from false harmonics in the current signal 

of the BLDC motor, the connection of the BLDC motor to the 

driver machine is carefully aligned. 

To evaluate the results obtained from the BLDC motor, in 

this study, an experimental setup was used. The driver machine 

of the setup is a three-phase induction motor. Therefore, for 

misalignment conditions, the results of the MCSA for both 

motors are compared together. 

 

THEORETICAL BACKGROUND 

A.  Effect Of Misalignment on A Rotating System 

Based on experimental and theoretical investigations         

[21, 22], the misalignment fault between two rotating machines 

causes vibration at the low harmonics of the rotational 

frequency of the system as follows: 

𝑓𝑀𝑣 = 𝑘𝑓𝑟                                                                               (1) 
 Where fr is the rotational frequency of the system and k is a 

positive integer.  

If the driver machine of the system is an electric motor, then 

the misalignment fault affects the current signal of the driver 

machine. The characteristic frequencies of the misalignment 

faults occur through the sidebands of the main frequency of the 

system as follows [14, 23, 24]: 

𝑓𝑀𝑐 = 𝑓𝑠 ± 𝑘𝑓𝑟                                                                     (2) 
Were, send main frequency of the electric machine.  

B.  Detection Of  Faults Through BLDC 

Fig. 1 shows a schematic representation of the MCSA 

method for rotating systems with an electric machine as a 

driver. In this method, the current signals from an induction 

motor are measured and analysed to detect different faults in the 

system.  

It is feasible to attach an electric engine to a rotating system's 

non-electric driver machine in order to monitor the system's 

speed fluctuations. The technique for measuring the current 

signal from a BLDC motor is schematically shown in Fig. 2. In 

this diagram, the non-electric driver machine serves as the 

system's primary engine, while the BLDC motor serves as a 

generator. The outputs of the BLDC motor are equipped with 

three current gauges.  

 

electrical rotating 

machine 
Load system

coupling

Current sensor

 

Fig. 1. Schematic representation of an electrical rotating machine for 

acquiring electric driver current signals  

Fig. 2.  Schematic representation of a non-electrical rotating machine for 

acquiring BLDC current signals 

C.  Fast Fourier Transforms 

Most of the faults in rotating machines cause specific 

frequency signatures in vibration and current signals. These 

faults can be detected by the signals in the frequency domain. 

The Fourier Transform (FT) is a famous method to analyze the 

signals in the frequency domain. The FT decomposes each 

signal into a series of complex exponential functions with 

different frequencies. The Fourier transform function was 

defined as [24]: 

𝑋(ω) = ∫ 𝑥(𝑡) ∗ e−iωt 𝑑𝑡
+∞

−∞
                                  (3) 

Where, t represents the time, f is frequency, x is the signal in 

the time domain, and X is the signal in the frequency domain. 

The FT was used for time-continuous signals. However, the 

signals measured by the condition monitoring systems are 

discrete signals discrete-time time signals, and the discrete 

Fourier transform (DFT) was used to transform the signal to the 

frequency domain.  DFT can be expressed as: 

𝑋𝑘 = ∑ 𝑥𝑛𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0     𝑘 = 0: 𝑁 − 1                       (4) 

Despite the advantages of the DFT in processing signals, it is 

computationally inefficient. The Fast Fourier transform (FFT) 

overcomes this limitation and computes the DFT in a fast 

method.  

D.   Wavelet Packet Transform 

The wavelet transform (WT) is another method that provides 

the capability of analysis of the signals in the frequency domain. 

The WT decomposes a time domain signal into approximate 

 

and detailed signals. The approximate signal includes the low-

frequency contents of the main signal and the detail signal 
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contains the high-frequency features of the main signal. By the 

WT, the low-frequency signal itself has decomposed into 

approximate and detailed signals again. This signal 

decomposition can take several steps. The WT steps were 

illustrated in Fig. 3. Due to the signal decomposition method 

proposed in the WT method, low-frequency faults are detected 

more precisely than high-frequency faults. However, most of 

the faults in rotating machines occur in high-frequencies, and 

the WT is weak at high-frequency separation.  The Wavelet 

packet transform analysis complements the WT. 

 
Fig. 3.   Block diagram of DWT 

As a modern tool for signal processing, the Wavelet 

Packet Transform (WPT) has received a great deal of attention 

in condition monitoring applications [25-29]. In comparison to 

WT, The WPT not only decomposes the approximate signal 

into two other signals but also divides the detail signal into two 

new signals. Fig. 5 demonstrates the WPT for a time domain 

signal. The WPT enables a more accurate analysis of faults with 

high-frequency characteristics. To perform a WPT on a time 

signal at a given level j, the functions were defined as follows 

[29]: 

𝑑𝑗+1.2𝑛 = ∑ ℎ(𝑚 − 2𝑘)𝑑𝑗.𝑛𝑚                                          (5)  

𝑑𝑗+1.2𝑛+1 = ∑ 𝑔(𝑚 − 2𝑘)𝑑𝑗.𝑛𝑚                                     (6) 

Where, 𝑔 and ℎ are high and low pass filters, respectively, 

known as Quadrature Mirror Filters (QMF). Also, 𝑑𝑗.𝑛 denotes 

the wavelet coefficients at the 𝑗 level, 𝑛th sub-band, 

respectively, and 𝑚 is the number of the wavelet coefficient. 

According to Fig. 4, if a given signal was decomposed into two 

levels, four sub-bands are produced, covering every four bands 

of frequency information [29]. Then the most suitable 

frequency band that has the fault frequency characteristic was 

selected and by feature extraction, an indicator is obtained to 

diagnose the fault.  

 

Fig. 4.   Illustration of wavelet packet transforms. 

EXPERIMENTAL SETUP 

The experimental setup, as shown in Fig. 5, includes a two-

pole, three-phase squirrel cage induction motor (IM) as a driver 

machine that connects to the load system via a jaw coupling. 

The loading system is a three-phase synchronous generator. In 

addition, a 14-pole small-scale BLDC motor was coupled to the 

driver to detect the misalignment fault between the driver 

machine and the load system. Although the system could 

operate with a non-electric driver machine, the IM offers the 

chance to evaluate the outcomes of the IM and the BLDC 

motor. The three stages of the IM and the BLDC motor's current 

signals were measured using six current sensors. The DAQ card 

sends the current signals to the computer, where MATLAB 

software is used to analyze the signals. 

The experiments are performed in three different conditions 

including healthy condition, minor parallel misalignment (level 

1), and major parallel misalignment (level 2). For each 

condition, the experiments were performed in no-load, half-

load, and full-load conditions. To provide minor parallel 

misalignment, a 1 mm metal sheet was placed under the IM. 

Also, for major parallel misalignment, a 2 mm metal sheet was 

placed under the IM. For all experiments, the current signals of 

the IM and the BLDC motor were measured with a sampling 

rate of 5 kHz. 

 
Fig. 5. Experimental set-up 
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RESULTS 

A.  Fast Fourier Transform 

In Fig. 6, a representative current signal of the BLDC motor 

and the IM is shown. The main frequency of the BLDC motor 

is higher than the IM because the BLDC motor has 14 poles 

while the IM has 2 poles. For this experiment, the angular 

velocity of the system for the no-load condition was                

 𝑣 =  2998 𝑟𝑝𝑚. Therefore, the main frequencies of the IM 

and the BLDC motor are 49.97 Hz and 349.77 Hz, respectively. 

In addition, for the misalignment fault, the characteristic 

frequencies of the current signal for the IM and the BLDC 

motor are obtained from (2). Some of these frequencies are 

listed in Table I and Table Ⅱ.  

 

 

Fig. 6. (top) IM current signal (bottom) BLDC motor current 

signal 

TABLE I  

Characteristic Frequencies of the IM’s Current Signal for 

Parallel Misalignment 

k frf 

1 99.7 

2 149.4 

3 199.1 

4 248.8 

TABLE Ⅱ 

  Characteristic Frequencies of the BLDC Motor’s Current 

Signal for Parallel Misalignment 

𝒌 𝒇𝒓𝒇 𝒌 𝒇𝒓𝒇 

-1 298.45 1 397.94 

-2 248.71 2 447.68 

-3 198.97 3 497.42 

-4 149.22 4 547.17 

     Fig.7 shows the current signal of the IM in the frequency 

domain for health conditions. In addition, Fig. 8 and 9 show the 

frequency content of the IM’s current signal in level-1 and 

level-2 faults. Comparing Fig. 8 and 9 with Fig. 7 demonstrates 

that in fault conditions the current signal has frequency contents 

that are determined in Table I.  The amplitude of each harmonic 

is given in Fig. 10 for healthy, level-1, and level-2 conditions. 

Among them, the first harmonic related to K=1 has better 

results to detect the fault.  

 

Fig. 7.  Normalized spectrum of the IM’s current for the healthy condition  

 

Fig. 8.  Normalized spectrum of the IM’s current for level-1 misalignment 
condition 

 

Fig. 9.  Normalized spectrum of the IM’s current for level-2 misalignment 

condition 

 

Fig. 10.  Normalized amplitude of the harmonics of the IM’s current in the 

healthy condition, and level-1 and level-2 misalignment  

In Fig. 11 to Fig. 13, the current signal of the BLDC motor 

in the frequency domain is shown for healthy condition, and 

level-1 and level-2 misalignment. The results indicate that for 

fault conditions the amplitude of the characteristic frequencies 

was increased in comparison to the healthy condition. Among 

these harmonics, the first two harmonics reequip equated to 

𝐾 =  −1 and 𝐾 = 1 have more amplitude changes, with 
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amplitude of -55db and -47db for level-1, and amplitude of -

53db and -46db for level-2. These harmonics have the highest 

amplitude among the fault frequencies and can easily be 

separated from healthy conditions. The amplitude of the 

harmonics (-4 to 4) in the healthy, level-1 fault and level-2 fault 

is specified in Fig. 14. A comparison of Figs 14 and 10 shows 

that the fault frequency characteristics around the main 

frequency are better separated from the healthy condition in the 

BLDC motor than in the IM. 

 

Fig. 11.  Normalized spectrum of the BLDC current for the healthy condition 

 

Fig.12. Normalized spectrum of the BLDC current for level-1 misalignment 

 
Fig. 13. Normalized spectrum of the BLDC current for level-2 misalignment 

 

Fig. 14.  Normalized amplitude of the harmonics of the BLDC motor’s current 

in the healthy condition, and level-1 and level-2 misalignment 

Therefore, it can be concluded that it is possible to detect the 

parallel misalignment between the driver machine and the load, 

using the FFT analysis of the BLDC motor’s current. 

B.  Wavelet Packet Transform 

For five stages in WPT, the current signal was divided into 

approximate and detailed signals using the Daubechies 8 

mother wavelet. The frequency content of the current signal 

was split into 32 sub-bands in the fifth stage of the WPT. The 

frequency spectrum of each sub-band at step 5 is displayed in 

Table Ш.  

 
TABLE Ш  

The Frequency Ranges of Each Sub-Band for Step 5 

sub-

band 

Frequency 

range (Hz) 

sub-

band 

Frequency 

range (Hz) 

𝑑5.0(𝑡) 0-78 𝑑5.16(𝑡) 1248-1326 

𝑑5.1(𝑡) 78-156 𝑑5.17(𝑡) 1326-1404 

𝑑5.2(𝑡) 156-234 𝑑5.18(𝑡) 1404-1482 

𝑑5.3(𝑡) 234-312 𝑑5.19(𝑡) 1482-1560 

𝑑5.4(𝑡) 312-390 𝑑5.20(𝑡) 1560-1638 

𝑑5.5(𝑡) 390-468 𝑑5.21(𝑡) 1638-1716 

𝑑5.6(𝑡) 468-546 𝑑5.22(𝑡) 1716-1794 

𝑑5.7(𝑡) 546-624 𝑑5.23(𝑡) 1794-1872 

𝑑5.8(𝑡) 624-702 𝑑5.24(𝑡) 1872-1950 

𝑑5.9(𝑡) 702-780 𝑑5.25(𝑡) 1950-2028 

𝑑5.10(𝑡) 780-858 𝑑5.26(𝑡) 2028-2106 

𝑑5.11(𝑡) 858-936 𝑑5.27(𝑡) 2106-2184 

𝑑5.12(𝑡) 936-1014 𝑑5.28(𝑡) 2184-2262 

𝑑5.13(𝑡) 1014-1092 𝑑5.29(𝑡) 2262-2340 

𝑑5.14(𝑡) 1092-1170 𝑑5.30(𝑡) 2340-2418 

𝑑5.15(𝑡) 1170-1248 𝑑5.31(𝑡) 2418-2500 

 
From the FFT analysis, it was found that the best 

characteristic frequency for the IM to detect the misalignment 

fault is 99.7 Hz. This frequency is in the sub-bandd5.1(t). 

Fig.15 shows the time domain diagram of sub-band 𝑑5.1(𝑡) for 

the IM current signal in healthy conditions and misaligned 

conditions.  

 
Fig. 15.  Detail coefficient 𝑑5.1(𝑡)  for IM current in the healthy condition, and 

level-1 and level-2 fault conditions 
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Also, the frequencies 298.45Hz and 397.94Hz are the best 

characteristic frequencies to detect the misalignment fault 

through the current signal of the BLDC motor. These 

frequencies are in the sub-bands d5.3(t) and d5.5(t) of the WPT. 

Because both sub-bands provide similar results, only the sub-

band d5.3(t) was used for the analysis. Fig. 16 shows the 

comparison between the BLDC current signals of the healthy 

condition, and level-1 and level-2 fault conditions for the sub-

band 𝑑5.3(𝑡). 

 

Fig. 16. Detail coefficient 𝑑5.3(𝑡)  for BLDC current in the healthy condition, 

and level-1 and level-2 fault conditions 

Figs 15 and 16 demonstrate that the energy of the current 

signal increases by the misalignment fault. The increase in the 

energy of the signal lead to a diagnostic method based on sub-

band energy. The sub-band signal energy and the normalized 

energy can be calculated as follows: 

 

𝑡ℎ𝑒 𝐸jn = ∑ (𝑑j,n(t))2
𝑡                                              (7) 

𝑒𝑞𝑢𝑎𝑙𝐸jn,N =
𝐸jn

𝐸𝐴𝑣𝑒
                                                   (8) 

Here 𝑑i,j is the sub-band of the original signal, and 𝐸jn 

is the energy of the sub-band. In addition, 𝐸𝐴𝑣𝑒is the 

average energy of the original signal in healthy 

conditions.  Fig. 17 shows the normalized energy of sub-

band 𝑑5.1(𝑡) for IM’s current signal. Also, Fig. 18 shows 

the normalized energy of sub-band  𝑑5.3(𝑡) for the BLDC 

motor’s current signal. From tig.17 and Fig.18, it is obvious 

that for both IM and BLDC motors the amount of normalized 

energy Esb_Norm in fault condition is higher than the health 

conditions. Comparing Fig. 17 and Fig. 18 demonstrates that 

the energy of the current signal in IM increases with the 

increase of the load, while for the BLDC motor the energy of 

the current signal decreases with the increase of the load. The 

reason for this phenomenon is that with an increase in the load, 

the IM’s current increases to produce more power. At the same 

time, the speed of the IM and the BLDC motor decreases. 

Therefore, because the BLDC motor acts as a generator its 

current decreases. As it is clear in Fig. 17 and Fig. 18, this 

method has well separated the misalignment fault from the 

healthy state. 

 

Fig. 17.   Normalized energy 𝒅𝟓.𝟏(𝒕) for IM current in the healthy, level-1 
fault and level-2 fault conditions at different loads 

 

Fig. 18.  Normalized energy d5.3(t) for BLDC current in the healthy, level-1 

fault and level-2 fault conditions at different loads 

 CONCLUSION 

These days, many factories and industries have rotating 

machinery that is constantly in use, and any one of these 

systems' failure can seriously harm the entire industry. As a 

result, it is essential to watch the condition of such systems. The 

MCSA technique is the most cost-effective way to monitor the 

condition of a rotating machine. However, due to the fact that 

multi-MW scale motors with a high current range require 

sensors with a higher resistance, which in turn raises the cost, 

this technique cannot be used for all rotating systems. Second, 

it is challenging to handle current signals because noise brought 

on by voltage fluctuations is present in the direct current drawn 

from the induction motor. Thirdly, there are rotating systems 

used in some industries that do not operate with electric current, 

and thereby it is not possible to use MCSA. In this study, a small 

BLDC motor was coupled to a rotating system and the current 

signal of the BLDC was measured. This signal was analyzed by 

two different methods including Fast Fourier Transform and 

wavelet packet transform. The results indicated that both 

methods are capable to distinguish the parallel misalignment 

between the driver and the load. 
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