
Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 39

Abstract— Embedding learning is an essential issue in Natural

Language Processing (NLP) applications. Most existing methods

measure the similarity between text chunks in a context using pre-

trained word embedding. However, providing labeled data for

model training is costly and time-consuming. So, these methods

face downward performance when limited amounts of training

data are available. This paper presents an unsupervised sentence

embedding method that effectively integrates semantic hashing

into the Kernel Principal Component Analysis (KPCA) to

construct embeddings of lower dimensions that can be applied to

any domain. The experiments conducted on benchmark datasets

highlighted that the generated embeddings are general-purpose

and can capture semantic meanings from both small and large

corpora.

Index Terms— Kernel Principal Component Analysis, Natural

Language Processing, Semantic Hashing, Sentence Embedding.

I. INTRODUCTION

 ORD embedding refers to learning distributed word

 representations to encode word semantics. It can be

applied for various applications such as sentiment analysis, text

classification, machine translation, named entity recognition,

information retrieval, etc. [1-3]. Supervised word embedding

achieves remarkable performance given large amounts of

manually labeled data. However, they suffer some limitations:

(1) Supervised word embedding approaches require large

amounts of labeled data with word-to-meaning associations.

Acquiring such labeled data can be expensive and time-

consuming, especially for specialized domains or low-resource

languages. (2) Supervised word embeddings are often specific

to the domain in which they are trained. They may not

generalize well to new or different domains, limiting their

applicability in diverse contexts. (3) Supervised methods rely

on a predefined vocabulary, meaning that they may struggle to

handle Out-Of-Vocabulary (OOV) words or rare terms that are

not present in the training data. This can limit their usefulness

in scenarios where new or specialized vocabulary is

encountered. (4) The quality and biases of the labeled data used

to train supervised word embeddings can influence the resulting

embeddings. If the labeled data contains biases or errors, the

embeddings may inherit those biases, leading to biased

representations [4].

1- Faculty of computer engineering and information technology, Sadjad

University, Mashhad, Iran.

By leveraging unlabeled data and extracting meaningful

representations from it, unsupervised word embedding

methods, e.g., Glove [5] and word2vec (Skip-Gram [6]

version), overcome these limitations. These methods offer data

efficiency, generalization, adaptability, and the potential to

capture more nuanced semantic relationships, making them

valuable for a wide range of NLP tasks and applications [7].

Although word embedding methods had been achieved great

success, sentence embedding is necessary for natural language

understanding systems. The methods for sentence

representations can be grouped into two main categories [8]:

Neural network-based methods. Based on the idea that

words in similar contexts have a similar meaning, Avg. GloVe

[9], IS-BERT [10], BERT-flow [11], and SBERT-WK [12]

have been proposed using various pre-trained models inspired

by neural network language modeling. An unsupervised

method for generating domain-independent embeddings [13]

was proposed using several recurrent network variants. An

unsupervised method for paraphrase detection based on

recursive autoencoders [14] was proposed. Overall, by learning

from large amounts of text data, these pre-trained models

capture the co-occurrence patterns and distributional properties

of words, resulting in embeddings that encode meaningful

semantic information. Meanwhile, by utilizing pre-trained

embeddings as input features, models can leverage the

knowledge acquired during pre-training, which often leads to

improved performance and faster convergence. However, these

pre-trained models have shortcomings [15-17], such as (1) to

obtain appropriate performance, extensive text collections are

needed for the training phase, (2) the words must have been

seen in the training data before embedding, (3) selecting

appropriate values for tunable parameters is a time-consuming

process, (4) providing high-quality training sets can be difficult,

expensive, or even impossible to acquire for some applications.

The majority of well-known word embeddings rely on a

specified vocabulary, therefore when OOV words need to be

processed, they are typically ignored. In addition, (5) the

majority of these models do not or, if they do, only partially

take into account the morphology of the words contained inside

the word vectors. The quality of document representations

based on them may suffer as a result. Consequently, it is

advantageous to create vector representations without

2- Faculty of Electrical and Computer Engineering, Semnan University,

Semnan, Iran.
Corresponding author: j_hamidzadeh@sadjad.ac.ir

An Unsupervised Learning Embedding Method

Based on Semantic Hashing

Javad Hamidzadeh1*, Mona Moradi 2

w

40 Volume 2, Number 3, November 2022

supervision.

statistical methods, e.g., averaging the embeddings of words

in a sentence, is an easy way of obtaining sentence embeddings

but some defects, like neglecting the word order, realizing the

inexpedient meaning of the sentence, and failure to adopt an

appropriate approach when dealing with long sentences,

causing utilizing sentence embedding instead of word

embedding. Hash-based methods have received much more

attention in recent years. Methods presented in [18-20] generate

hash codes for short text segments while preserving semantic-

level similarities.

Aiming to encode the sentences into the embedding vectors,

the proposed method effectively combines the SimHash

algorithm with the KPCA in an unsupervised manner; thereby,

sentences that share semantic and syntactic properties are

mapped into similar vector representations. SimHash is a

computationally efficient method that finds applications in

various fields, including information retrieval, plagiarism

detection, duplicate content detection, and clustering of similar

documents [21]. SimHash can be used to encode words as

binary vectors (hash codes) in the context of word embedding,

where words with similar semantic meanings have comparable

binary representations. By comparing their hash values, this

feature makes it beneficial for locating identical or almost

identical things. It is possible to gauge how similar two

SimHash values are by comparing the hamming distance (the

number of different bits) between them. The smaller the

hamming distance, the more similar the items are considered to

be. Besides, KPCA is a nonlinear dimensionality reduction

technique that can capture complex nonlinear relationships in

the data. In the context of word embedding, KPCA can be used

to transform the binary word representations obtained from

SimHash into a continuous and low-dimensional space, while

preserving their semantic similarities. KPCA enables finding

low-dimensional representations that preserve the underlying

structure of the data, even when the relationships are nonlinear.

Here, KPCA is used to map the sentence embeddings to a

lower-dimensional space that aligns better with a target task.

This approach allows for the creation of word embeddings that

capture semantic similarities between words. It provides a way

to represent words in a continuous and low-dimensional space,

facilitating downstream natural language processing tasks such

as text classification, information retrieval, or semantic

analysis.

The advantages of the proposed method are that it can be

applied to any size of text chunks: sentences, paragraphs, and

documents. The created embeddings are also unresponsive to

uncommon or infrequent words. In addition, with respect to the

fundamental ideas of locality-sensitive hashing (LSH) methods,

with SimHash being a variant, the robustness of the proposed

method against small variations or noise can be considered [22].

The remainder of this paper is organized as follows: Section

II provides related work. In Section III, the proposed method is

described. Several experiments have been conducted on several

datasets to evaluate the performance of the proposed method.

These results have been discussed in Section IV, followed by a

conclusion in Section V.

. RELATED WORK

Unsupervised methods for word and sentence embedding

provide valuable tools for understanding and processing natural

language data without relying on labeled annotations. They

offer a way to extract meaningful representations from vast

amounts of unlabeled text, opening up possibilities for various

downstream NLP applications and facilitating research in areas

where labeled data is scarce or non-existent. The recent

successes of unsupervised embeddings in several applications

demonstrate the capability of these methods. Generally,

unsupervised learning embedding methods can be categorized

into two groups [23].

Unsupervised learning embedding with adversarial

training. For word embeddings, significant efforts have been

made [24-26], but sentence embeddings remain to be

discovered. Previous studies on sentence embedding have

computed sentence embeddings by composing word

embeddings [27, 28]. Recurrent Neural Networks (RNNs) and

Long Short-Term Memory (LSTMs) [29], recursive neural

networks [30, 31], and Convolutional Neural Networks (CNNs)

as deep learning-based models have a strong ability to capture

the hidden correlations among words. Still, high complexity

makes them time-consuming, especially for training large

datasets. The Word2vec [6] was introduced for learning word

vector representations. For representing large textual chunks,

such as sentences and paragraphs, a generalized version of

Word2vec, named Doc2vec [32] was proposed. Authors in [33]

studied on CNNs for learning sentences. Authors in [34]

introduced a method for unsupervised learning of a distributed

sentence encoder. They trained an encoder-decoder model that

tried reconstructing the surrounding sentences of an encoded

passage. A sentence encoder model [35] trained on a large

corpus was presented. Authors in [36] employed RNN and

LSTM architectures.

Although deep learning-based approaches generate suitable

vectors for word representation, their performance is reduced

when the model is trained on a small dataset due to several

reasons [37-40]: (1) Deep learning models often have a large

number of parameters, which allow them to capture complex

patterns and relationships in the data. With a smaller dataset,

there is a higher risk of overfitting, where the model memorizes

the training examples instead of learning generalizable patterns.

By giving a more varied and representative sample of the

underlying data distribution, a larger dataset assists in reducing

overfitting. (2) Effective generalisation of new data is a goal of

deep learning models. The model can acquire more robust and

nuanced representations, capturing a wider range of patterns

present in the data, by being exposed to a larger variety of

samples. This enhances the model's generalization and

performance on fresh, novel examples. (3) Deep learning

models often learn hierarchical representations of the input

data. Each layer of the network learns to extract progressively

more abstract and meaningful features. These representations

become more accurate and informative as the model observes a

larger and more diverse dataset. With a smaller dataset, the

learned representations may not capture the full complexity of

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 41

the underlying data distribution. It is necessary to note that

while there is no specific threshold for dataset size, it is

generally observed that deep learning models tend to benefit

from larger datasets. However, the precise impact of dataset

size can vary depending on the complexity of the task, the

model architecture, and other factors. It's important to strike a

balance between the availability of data and the computational

resources required to train deep learning models effectively.

Unsupervised learning with similarity distribution. In [41]

an unsupervised method for extractive multi-document

summarization was proposed based on the centroid approach

and the sentence embedding representations. Gupta [42]

proposed an unsupervised model that allows composing

sentence embeddings using word vectors and n-gram

embeddings. In [43], Sent2Vec1 was introduced which is an

unsupervised model allowing composing sentence embeddings

using word vectors and n-gram embeddings. Besides, an

unsupervised sentence embedding method [44] was proposed

based on the discourse vectors in the random walk model for

generating text.

In conclusion, pre-trained language models based on neural

networks have achieved significantly better results in various

NLP tasks compared to traditional statistical methods and have

revolutionized the field of NLP in recent years [45, 46]. There

are some reasons why pre-trained language models have

achieved better results: (1) pre-trained language models have

the ability to capture a contextual understanding of words and

sentences [47]. They learn to represent words based on their

surrounding context, allowing them to capture the nuances of

language and better handle word sense disambiguation.

Traditional statistical methods often rely on simple word co-

occurrence statistics or bag-of-words representations, which

lack the contextual understanding captured by neural language

models. (2) Pre-trained language models are trained on massive

amounts of text data, typically on large-scale corpora such as

Wikipedia or web text [48]. This extensive pre-training enables

the models to learn rich representations of words, phrases, and

even entire sentences. In contrast, statistical methods often

require manual feature engineering and rely on relatively

smaller datasets, limiting their ability to capture complex

language patterns. (3) Pre-trained language models can be fine-

tuned for specific downstream tasks with smaller task-specific

datasets [49]. This transfer learning approach allows the models

to leverage the knowledge learned during pre-training and adapt

it to specific tasks [50]. This is particularly beneficial when

labeled data for a specific task is limited. Traditional statistical

methods often require task-specific feature engineering or

training from scratch, which can be time-consuming and less

effective with limited data. (4) Pre-trained language models can

be adjusted or tailored to certain domains or specialized

datasets, enabling them to excel even in tasks that are peculiar

to those areas. They are extremely adaptable across a variety of

fields and applications thanks to this versatility. Traditional

statistical methods may require extensive manual feature

engineering or specialized models for different domains,

making them less flexible and scalable. (5) Pre-trained language

models excel at capturing semantic relationships between

words and understanding various aspects of language, such as

synonymy, antonymy, analogies, and sentence-level coherence.

They can generate more meaningful and contextually

appropriate word embeddings or sentence representations.

Statistical methods, while useful for some tasks, often struggle

to capture these higher-level semantic relationships effectively.

Statistical methods have been used in NLP for several

reasons, despite the advent and success of neural network-based

approaches [51]. Statistical methods often provide more

interpretability compared to neural network-based models.

They allow researchers and practitioners to understand the

underlying statistical principles and assumptions used in the

models [52]. This interpretability can be crucial in domains

where explainability and transparency are required, such as

legal or regulatory contexts [53]. Statistical methods are often

simpler in terms of model architecture and implementation.

They tend to have fewer parameters and require fewer

computational resources compared to neural network-based

models. This simplicity makes them computationally efficient

and suitable for scenarios with limited computational power or

memory constraints. Statistical methods can work well with

limited amounts of data. Even with limited datasets or in

situations where obtaining huge amounts of labeled data is

difficult or expensive, they can nevertheless produce good

results. Contrarily, for neural network-based models to perform

to their full potential, large-scale training datasets are often

necessary. Manual feature engineering is frequently used in

statistical approaches, where domain-specific knowledge and

skill can be used to create useful features [54]. This feature

engineering approach enables users to add certain language or

contextual data to the model, improving performance for some

jobs. Contrarily, models built on neural networks may

automatically learn characteristics from raw data, which may

not always capture the desired domain-specific information.

Besides, certain applications have specific constraints or

requirements that make statistical methods more suitable. For

example, in some low-resource or real-time applications, the

simplicity, speed, and low memory footprint of statistical

methods make them preferable over complex neural network

models.

It's important to note that while statistical methods have their

advantages, neural network-based approaches have made

significant advancements and achieved state-of-the-art results

in various NLP tasks. The choice of method depends on factors

such as the specific task, available resources, interpretability

requirements, and the trade-off between performance and

complexity.

. PROPOSED METHOD

In this section, a new unsupervised method for sentence

embedding is introduced by incorporating the SimHash

algorithm into the KPCA.

As shown in Fig. 1, the pre-processed sentences are

extracted from each document and accumulated into a

comprehensive set of unique sentences. The sentence pre-

processing involves several steps such as tokenization,

stemming, removing stop words, and lowercasing each

42 Volume 2, Number 3, November 2022

sentence. Next, the task of generating hash binary codes

(fingerprints) is done for each word of a sentence using the

SimHash algorithm. SimHash, as one of the extensions of the

Locality Sensitive Hashing (LSH) [55] algorithm for large-

scale real-valued data, was first introduced by Charikar [56].

Fig. 1. The proposed sentence embedding pipeline.

 SimHash is designed to produce similar hash values for

similar inputs, making it suitable for identifying similar items

based on their hashes. It produces a compact representation of

high-dimensional vectors by using random projections. Then, it

applies a weighting scheme to each feature and combines them

to create a binary fingerprint. The fingerprint is obtained by

comparing the weighted feature values with a threshold and

setting the corresponding bit in the hash value based on the

result of the comparison.

For word 𝑤, the SimHash function is defined as follows.

ℎ(𝑤) = 𝑠𝑖𝑔𝑛(𝜈𝑡𝑤) = {
+1 𝑖𝑓 𝜈𝑡𝑤 ≥ 0
−1 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

where 𝜈𝑡 is the transpose of the randomly generated vector 𝜈.

Now, given a set containing 𝑤 words extracted from a sentence,

SimHash is used to generate d-bit fingerprints ℎ ∈ 𝐻 ≡

{−1,1}𝑑; meanwhile, simple word averaging is performed to

obtain sentence embeddings.

Afterward, given a set containing 𝑛 sentences extracted from

a document, the similarities between sentences in the original

spaces and transformed spaces are calculated using similarity

function presented in Eq. (2):

𝑠𝑖𝑚(𝑠𝑖 , 𝑠𝑗) = 𝑒−𝑑𝑖𝑠𝑡(𝑠𝑖,𝑠𝑗); ∀𝑖, 𝑗 ∈ ℝ𝑛 (2)

where 𝑠𝑖 represents a vector 𝑠𝑖 = [𝑠𝑖1, 𝑠𝑖2, ⋯ , 𝑠𝑖𝑑], where 𝑑 is the

number of the bits of the fingerprints and dist is the Hamming

distance of two fingerprints. The similarity matrix sim contains

n n-dimensional elements. This matrix is obtained by

computing Eq. (2) to all fingerprint pairs, as shown below.

𝐬𝐢𝐦 = [
𝑠𝑖𝑚(𝑠1, 𝑠1) ⋯ 𝑠𝑖𝑚(𝑠1, 𝑠𝑛)

⋮ ⋱ ⋮

𝑠𝑖𝑚(𝑠𝑛 , 𝑠1) ⋯ 𝑠𝑖𝑚(𝑠𝑛 , 𝑠𝑛)
]

𝑛×𝑛

To find the distributed representation of the sentences,

KPCA is employed. By exploiting PCA, obtained fingerprints

from the previous step can be converted to the low dimensional-

vector space where the dimensions are features that describe

semantic properties.

Using the kernel trick and nonlinear mapping function 𝜙,

PCA maps each element of the similarity matrix sim onto a

high-dimensional feature space to obtain the principal

components from that space [57]. The term ‘kernel’ refers to

the dot product of the projections of the 𝑠𝑖𝑚(𝑠𝑖 , 𝑠𝑗) under 𝜙.

𝜅(𝑠𝑖 , 𝑠𝑗) = 𝜙(𝑠𝑖)𝜙(𝑠𝑗)𝑇 (3)

The kernel matrix 𝜿 is computed by applying a nonlinear

kernel function to the similarity matrix sim. The proposed

method employs the Gaussian Radial Basis Function (RBF) as

a kernel.

𝜅(𝑠𝑖 , 𝑠𝑗) = 𝑒
−𝛾‖𝑠𝑖−𝑠𝑗‖

2

2

 (4)

𝛾 =
1

2𝜎2
 (5)

where 𝜎 is the variance of the data. If the data has a high

variance, it suggests that the data points are spread out and have

a wide range of values. In such cases, a smaller 𝛾 value may be

suitable to capture the global structure and smooth out the

representations. This prevents overfitting to local patterns and

ensures that the embeddings capture the broader trends and

variations in the data. On the other hand, if the data has low

variance, it implies that the data points are more tightly

clustered or have limited variation. In such scenarios, a larger 𝛾

value may be appropriate to capture finer details and localized

patterns in the data.

The RBF kernel offers several benefits when used in KPCA:

(1) The RBF kernel has the property of universal

approximation, which means it can approximate any continuous

function given enough basis functions. This property allows the

RBF kernel to represent complex and diverse data patterns

accurately. By employing a suitable number of basis functions,

KPCA with RBF kernel can effectively model and approximate

the underlying structure of the data.

(2) The RBF kernel allows KPCA to capture nonlinear

relationships in the data. It maps the original data into a higher-

dimensional feature space, where linearly inseparable patterns

can be separated more effectively. This flexibility is particularly

useful when dealing with complex and nonlinear data

distributions, enabling KPCA to discover hidden structures and

capture intricate relationships.

(3) The RBF kernel produces smooth and continuous

representations in the feature space. It assigns higher weights to

points that are closer together, gradually decreasing their

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 43

influence as the distance increases. This characteristic ensures

that nearby data points have similar representations, preserving

local relationships and maintaining the overall continuity of the

embeddings.

(4) The RBF kernel is less sensitive to outliers compared to

other kernels, such as the linear kernel. Outliers typically have

less influence on the resulting embeddings when using the RBF

kernel, allowing KPCA to focus more on the underlying data

distribution. This robustness to outliers helps in obtaining more

reliable and stable representations, particularly when dealing

with noisy or contaminated data.

To obtain principal components in the kernel space, the

covariance of the kernel matrix 𝜿 should be maximized by

solving Eq. (6).

𝐶𝜈 = 𝜆𝜈 (6)

where 𝐶 is the covariance matrix (see Eq. (7)), 𝜆 is an arbitrary

eigenvalue, and 𝜈 is its corresponding eigenvector.

𝐶 =
1

𝑛
𝜿𝜿𝑇 (7)

Combining Eqs. (7) and (4), and substituting into Eq. (6), Eq.

(8) is taken as follows:

𝜿𝛼 = 𝑛𝜆𝛼 (8)

where 𝜶 = (𝛼1, 𝛼2, ⋯ , 𝛼𝑛)𝑇 denotes the column vector such

that the orthogonal eigenvector 𝜈 of the covariance matrix 𝐶

satisfies

𝜈 = ∑ 𝛼𝑖𝜙(𝑥𝑖)

𝑛

𝑖=1

 (9)

To obtain top-k principal components, let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥
𝜆𝑘 ≥ ⋯ ≥ 𝜆𝑛 show the first k eigenvalues of 𝜿 and

𝛼1, 𝛼2, ⋯ , 𝛼𝑛 the corresponding complete set of eigenvectors

obtained by Eq. (8). The corresponding eigenvectors

𝜈1, 𝜈2, ⋯ , 𝜈𝑘 of matrix 𝐶 are calculated by Eq. (9). At the end

of the proposed method, the employed projection matrix 𝑷 is

obtained by selecting k eigenvectors and dividing them by the

corresponding eigenvalues as follows:

𝑷 = [
𝜈1

𝜆1

,
𝜈2

𝜆2

, ⋯ ,
𝜈𝑘

𝜆𝑘

] (10)

Now, arriving a new sentence 𝑠𝑡, first, it is converted to the

d-bit SimHash code; then, the similarity function of this

sentence against all other sentences is calculated by considering

the kernel function as follows:

𝜏𝑡 = 𝜅(𝑠𝑖𝑚(𝑠𝑡 , 𝑠𝑖)); ∀𝑖 ∈ ℝ𝑛 (11)

The product of 𝜏𝑡 with the projection matrix 𝑷 generates the 𝑘-

dimensional KPCA embedding 𝜌𝑡 = 𝑷𝑇𝜏𝑡.

V. EXPERIMENTAL RESULTS

In this section, the experiments for the evaluation of the

proposed method are described. Some experiments have been

conducted over well-known real-world datasets. The selected

datasets are introduced in subsection A. The evaluation

procedure is covered in subsection B. The experimental results

and their interpretations are described in subsection C.

A. Datasets

The proposed method is evaluated on widely-used datasets

STSB (Semantic Textual Similarity Benchmark) [36], SICK

(Sentences Involving Compositional Knowledge) [37], and

STS (Semantic Textual Similarity) tasks 2012 - 2016 [38-42].

These datasets consist of sentence pairs with labeled semantic

similarity scores ranging from 0 to 5, where a higher score

means higher semantic similarity. The STSB dataset has been

used as part of shared tasks in the SemEval (Semantic

Evaluation) series, which is a series of workshops focused on

semantic analysis and NLP tasks. It contains around 7,500

sentence pairs. The SICK dataset consists of approximately

10,000 sentence pairs across multiple tasks, including semantic

relatedness, paraphrase detection, and textual entailment. The

STS datasets have been utilized in various SemEval shared

tasks. The STS 2012, STS 2013, and STS 2014 datasets contain

1,500 sentence pairs. The STS 2015 dataset comprises a total of

5,000 sentence pairs across the various subtasks including STS

MSRvid (video descriptions), STS MSRpar (online article

snippets), STS OnWN (WordNet glosses), STS SMTeuroparl

(Europarl sentences), and STS Tweet (Twitter messages). The

STS 2016 dataset comprises a total of 12,304 sentence pairs

across the different subtasks including answer (sentence pairs

from community question-answering websites), headlines

(news headlines), plagiarism detection, and question-question

similarity.

B. Evaluation Procedure

Inspired by [58], Procedure 1 is carried out to evaluate the

performance of the proposed method. Accordingly, the cosine

similarity of each pair of the sentence embedding and the gold

label is calculated. For a pair, golden semantic similarity ranges

from 0.0 to 5.0, while cosine similarity ranges from -1.0 to 1.0.

To overcome the range difference, rank-based Spearman’s

correlation coefficient is employed.

PROCEDURE I

EVALUATION PROCEDURE
For each sentence pair do

1. Perform pre-processing stage (tokenization, stemming,
removing stop words, and lowercasing each sentence).

2. Derive sentence embeddings by the proposed method.
3. Compute the cosine similarity score as the predicted

similarity.
4. Compute Spearman’s rank correlation coefficient

between the predicted similarity and gold standard
similarity scores as the evaluation metric.

End for

Spearman's rank correlation is a statistical measure that

quantifies the strength and direction of the monotonic

relationship between two variables. It focuses on the ordinal

relationship, where the variables may not have a linear

association but still exhibit a consistent ordering pattern.

Spearman's correlation coefficient is calculated by first ranking

the values of each variable and then calculating the Pearson

44 Volume 2, Number 3, November 2022

correlation coefficient between the ranks. It ranges between -1

and 1, where:

 A coefficient of +1 indicates a perfect monotonic increasing

relationship, where higher ranks of one variable are

consistently associated with higher ranks of the other

variable.

 A coefficient of -1 indicates a perfect monotonic decreasing

relationship, where higher ranks of one variable are

consistently associated with lower ranks of the other

variable.

 A coefficient of 0 indicates no monotonic relationship

between the variables.

Spearman's correlation coefficient is useful when dealing

with non-linear relationships or variables measured on an

ordinal or ranked scale. It is less sensitive to outliers compared

to Pearson's correlation coefficient and can provide insights into

the direction and strength of the relationship, even if the

relationship is not strictly linear.

C. Results

For evaluation, the following sentence embedding methods

are considered competing methods.

 TF-IDF-SVD. A sentence is represented by a sparse vector

of TF-IDF. Then, the vector is reduced by SVD. This

method can uncover latent semantic relationships in the text

data. The reduced-dimensional representation may reveal

hidden associations and similarities between terms and

documents that are not immediately apparent in the original

 space.

 Smooth Inverse Frequency (SIF) [44]. It is an

unsupervised sentence embedding that employs a

weighted average of the word vectors. Then, modify them

using PCA/SVD. SIF incorporates Inverse Document

Frequency (IDF) weighting to down-weight frequently

occurring words in the embedding process. This helps to

mitigate the impact of common and less informative

words, enabling the focus on more important and

meaningful terms in the text. SIF does not explicitly

consider the word order or sentence structure in the

embedding process. It treats each sentence as a bag of

words, potentially limiting its ability to capture nuanced

semantic relationships that depend on word order or

syntax. SIF focuses primarily on individual word

embeddings and their IDF weighting. It does not explicitly

capture the contextual information or relationships

between words within a sentence, which can be crucial for

certain text-understanding tasks.

Table displays Spearman's rank correlation of the methods.

As observed, the proposed method attains the highest

Spearman's rank correlation for STS12 and the lowest

Spearman's rank correlation for STSB. In Table , the Pearson

correlation values of the methods are presented. The results

demonstrate that the proposed method achieves the highest

correlation values for all datasets when compared with the

competing methods.

TABLE I

Spearman’s Rank Correlation

Method STSB SICK STS12 STS13 STS14 STS15 STS16

TF-IDF-SVD 31.03 42.13 52.92 49.57 41.31 31.23 52.12

SIF(PCA) 56.97 51.04 57.31 58.03 58.27 50.82 59.65

Proposed method 61.25 62.35 62.18 69.63 61.33 61.15 62.19

TABLE II

Pearson Correlation Values

Method STSB SICK STS12 STS13 STS14 STS15 STS16

TF-IDF-SVD 36.05 44.28 57.29 48.82 41.18 34.83 53.23

SIF(PCA) 58.37 50.16 60.26 58.29 57.97 52.17 58.82

Proposed method 63.17 64.23 64.03 70.38 62.60 63.20 61.17

D. Time complexity

The time complexity of SimHash can be approximated as

𝑂(𝑑). This is because SimHash involves iterating over each

feature or dimension of the data item and performing bitwise

operations. It scales linearly with the number of dimensions,

making it computationally efficient for high-dimensional data.

The time complexity of KPCA depends on the number of

data points (n) and the dimensionality of the data (d). The

primary computational bottleneck of KPCA lies in the

computation of the kernel matrix. The time complexity for

computing the kernel matrix in KPCA is 𝑂(𝑛2𝑑). This is

because, for each pair of data points, a kernel function needs to

be evaluated, resulting in 𝑛2 evaluations. Furthermore, each

evaluation typically involves computing the dot product

between two d-dimensional vectors, which has a time

complexity of 𝑂(𝑑). After computing the kernel matrix, KPCA

performs eigenvalue decomposition or singular value

decomposition (SVD) on the matrix. The time complexity of

eigenvalue decomposition or SVD is 𝑂(𝑛2𝑑).

Overall, the time complexity of the proposed can be

approximated as 𝑂(𝑑) + 𝑂(𝑛2𝑑) + 𝑂(𝑛2𝑑).

V. CONCLUSION AND FUTURE WORK

For embedding learning tasks, techniques like Word2Vec,

GloVe, or BERT are commonly used, as they can preserve

semantic and syntactic relationships in a more nuanced way.

However, they cannot represent well on rare words with little

contextual information. To solve this issue, this paper proposes

a new unsupervised method for learning sentence embeddings

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 45

and generating new vectors for unseen sentences or even for

sentences that contain deliberately obfuscated words. The

proposed method simplifies the sentence embedding

computation by integrating SimHash with the KPCA.

Regarding the KPCA, the sentence representations are

transformed into a lower-dimensional space while preserving

nonlinear relationships.

Employing SimHash is beneficial since it is computationally

efficient, especially when dealing with large datasets. It can

accurately estimate the similarity between two inputs based on

the hamming distance between their hash values. However,

SimHash generates fixed-length hash values, which may lead

to a loss of granularity in representing the original data. Fine-

grained differences between inputs might be disregarded in the

hash representation. Also, SimHash does not capture the

semantic meaning of words or the context in which they appear.

It treats each word or feature independently, potentially leading

to limitations in applications where a deeper understanding of

language semantics is required. While SimHash can tolerate

some level of noise, excessive noise or significant perturbations

in the data may adversely affect its performance. It's essential

to preprocess the data appropriately and ensure that the noise

level is within reasonable limits for SimHash to provide

accurate similarity measurements.

Experiments performed on seven benchmark datasets have

shown that it gains the highest Spearman's rank for STS12 and

the lowest for STSB datasets.

In future work, the authors intend to focus on weighted

averaging for representing short phrases. Furthermore, since

different kernels may produce diverse embeddings and capture

various aspects of the data, kernel learning will be another issue

that should be investigated.

VI. REFERENCES

[1] J.E. Font, M.R. Costa-Jussa, Equalizing gender biases in neural machine
translation with word embeddings techniques, arXiv preprint

arXiv:1901.03116, (2019).

[2] R.A. Stein, P.A. Jaques, J.F. Valiati, An analysis of hierarchical text

classification using word embeddings, Information Sciences, 471 (2019)

216-232.

[3] E. Biswas, K. Vijay-Shanker, L. Pollock, Exploring word embedding

techniques to improve sentiment analysis of software engineering texts, in:
Proceedings of the 16th International Conference on Mining Software

Repositories, IEEE Press, 2019, pp. 68-78.

[4] F. Incitti, F. Urli, L. Snidaro, Beyond word embeddings: A survey,
Information Fusion, 89 (2023) 418-436.

[5] R. JeffreyPennington, C. Manning, Glove: Global vectors for word

representation, in: Conference on Empirical Methods in Natural Language
Processing, 2014.

[6] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed

representations of words and phrases and their compositionality, in:
Advances in neural information processing systems, 2013, pp. 3111-3119.

[7] D.S. Asudani, N.K. Nagwani, P. Singh, Impact of word embedding models

on text analytics in deep learning environment: a review, Artificial
Intelligence Review, (2023) 1-81.

[8] J. Qiang, F. Zhang, Y. Li, Y. Yuan, Y. Zhu, X. Wu, Unsupervised statistical

text simplification using pre-trained language modeling for initialization,

Frontiers of Computer Science, 17 (2023) 171303.

[9] J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word
representation, in, pp. 1532-1543.

[10] Y. Zhang, R. He, Z. Liu, K.H. Lim, L. Bing, An unsupervised sentence

embedding method by mutual information maximization, arXiv preprint
arXiv:2009.12061, (2020).

[11] B. Li, H. Zhou, J. He, M. Wang, Y. Yang, L. Li, On the sentence

embeddings from pre-trained language models, arXiv preprint
arXiv:2011.05864, (2020).

[12] B. Wang, C.C.J. Kuo, Sbert-wk: A sentence embedding method by

dissecting bert-based word models, IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 28 (2020) 2146-2157.

[13] J. Wieting, M. Bansal, K. Gimpel, K. Livescu, Towards universal

paraphrastic sentence embeddings, arXiv preprint arXiv:1511.08198,
(2015).

[14] R. Socher, E.H. Huang, J. Pennin, C.D. Manning, A.Y. Ng, Dynamic

pooling and unfolding recursive autoencoders for paraphrase detection, in:

Advances in neural information processing systems, 2011, pp. 801-809.

[15] B. Min, H. Ross, E. Sulem, A.P.B. Veyseh, T.H. Nguyen, O. Sainz, E.

Agirre, I. Heinz, D. Roth, Recent advances in natural language processing
via large pre-trained language models: A survey, arXiv preprint

arXiv:2111.01243, (2021).

[16] S. Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A. Huang,
E. Akyürek, A. Anandkumar, Pre-trained language models for interactive

decision-making, Advances in Neural Information Processing Systems, 35
(2022) 31199-31212.

[17] R.K. Kaliyar, A multi-layer bidirectional transformer encoder for pre-

trained word embedding: a survey of bert, in, IEEE, pp. 336-340.

[18] M.S. Charikar, Similarity estimation techniques from rounding algorithms,

in, 2002, pp. 380-388.

[19] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data

with neural networks, science, 313 (2006) 504-507.

[20] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, Advances in neural

information processing systems, 21 (2008).

[21] Y. Li, F. Liu, Z. Du, D. Zhang, A simhash-based integrative features

extraction algorithm for malware detection, Algorithms, 11 (2018) 124.

[22] J. Leskovec, A. Rajaraman, J.D. Ullman, Mining of massive data sets,
Cambridge university press, 2020.

[23] F. Hill, K. Cho, A. Korhonen, Learning distributed representations of

sentences from unlabelled data, arXiv preprint arXiv:1602.03483, (2016).

[24] T. Mikolov, W.-t. Yih, G. Zweig, Linguistic regularities in continuous

space word representations, in: Proceedings of the 2013 Conference of

the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2013, pp. 746-751.

[25] O. Levy, Y. Goldberg, Linguistic regularities in sparse and explicit word

representations, in: Proceedings of the eighteenth conference on
computational natural language learning, 2014, pp. 171-180.

[26] S. Arora, Y. Li, Y. Liang, T. Ma, A. Risteski, Linear algebraic structure of

word senses, with applications to polysemy, Transactions of the
Association of Computational Linguistics, 6 (2018) 483-495.

[27] W. Blacoe, M. Lapata, A comparison of vector-based representations for

semantic composition, in: Proceedings of the 2012 joint conference on
empirical methods in natural language processing and computational

natural language learning, Association for Computational Linguistics,

2012, pp. 546-556.

[28] J. Mitchell, M. Lapata, Vector-based models of semantic composition,

proceedings of ACL-08: HLT, (2008) 236-244.

[29] K.S. Tai, R. Socher, C.D. Manning, Improved semantic representations
from tree-structured long short-term memory networks, arXiv preprint

arXiv:1503.00075, (2015).

46 Volume 2, Number 3, November 2022

[30] R. Socher, B. Huval, C.D. Manning, A.Y. Ng, Semantic compositionality

through recursive matrix-vector spaces, in: Proceedings of the 2012 joint

conference on empirical methods in natural language processing and

computational natural language learning, Association for Computational
Linguistics, 2012, pp. 1201-1211.

[31] R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts,

Recursive deep models for semantic compositionality over a sentiment
treebank, in: Proceedings of the 2013 conference on empirical methods

in natural language processing, 2013, pp. 1631-1642.

[32] Q. Le, T. Mikolov, Distributed representations of sentences and
documents, in: International conference on machine learning, 2014, pp.

1188-1196.

[33] N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural
network for modelling sentences, arXiv preprint arXiv:1404.2188, (2014).

[34] R. Kiros, Y. Zhu, R.R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba,

S. Fidler, Skip-thought vectors, in: Advances in neural information
processing systems, 2015, pp. 3294-3302.

[35] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, A. Bordes, Supervised

learning of universal sentence representations from natural language
inference data, arXiv preprint arXiv:1705.02364, (2017).

[36] S.R. Bowman, G. Angeli, C. Potts, C.D. Manning, A large annotated

corpus for learning natural language inference, arXiv preprint
arXiv:1508.05326, (2015).

[37] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

[38] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with
deep convolutional neural networks, Communications of the ACM, 60

(2017) 84-90.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez,
Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural

information processing systems, 30 (2017).

[40] T.J. Sejnowski, The unreasonable effectiveness of deep learning in
artificial intelligence, Proceedings of the National Academy of Sciences,

117 (2020) 30033-30038.

[41] S. Lamsiyah, A. El Mahdaouy, B. Espinasse, S. El Alaoui Ouatik, An
unsupervised method for extractive multi-document summarization based

on centroid approach and sentence embeddings, Expert Systems with

Applications, 167 (2021) 114152.

[42] P. Gupta, Unsupervised learning of sentence embeddings using

compositional n-gram features, in, 2018.

[43] M. Pagliardini, P. Gupta, M. Jaggi, Unsupervised learning of sentence
embeddings using compositional n-gram features, arXiv preprint

arXiv:1703.02507, (2017).

[44] S. Arora, Y. Liang, T. Ma, A simple but tough-to-beat baseline for sentence
embeddings, (2016).

[45] A. Roshanzamir, H. Aghajan, M. Soleymani Baghshah, Transformer-based

deep neural network language models for Alzheimer’s disease risk
assessment from targeted speech, BMC Medical Informatics and Decision

Making, 21 (2021) 1-14.

[46] J. Lu, X. Zhan, G. Liu, X. Zhan, X. Deng, BSTC: A Fake Review Detection
Model Based on a Pre-Trained Language Model and Convolutional

Neural Network, Electronics, 12 (2023) 2165.

[47] Z. Dai, J. Callan, Deeper text understanding for IR with contextual neural
language modeling, in, pp. 985-988.

[48] N. Azzouza, K. Akli-Astouati, R. Ibrahim, Twitterbert: Framework for

twitter sentiment analysis based on pre-trained language model
representations, in, Springer, pp. 428-437.

[49] H. Christian, D. Suhartono, A. Chowanda, K.Z. Zamli, Text based

personality prediction from multiple social media data sources using pre-

trained language model and model averaging, Journal of Big Data, 8

(2021).

[50] V. Suresh, D.C. Ong, Using knowledge-embedded attention to augment
pre-trained language models for fine-grained emotion recognition, in,

IEEE, pp. 1-8.

[51] L.K. Şenel, I. Utlu, V. Yücesoy, A. Koc, T. Cukur, Semantic structure and
interpretability of word embeddings, IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 26 (2018) 1769-1779.

[52] J.J. Lastra-Díaz, J. Goikoetxea, M.A.H. Taieb, A. García-Serrano, M.B.
Aouicha, E. Agirre, A reproducible survey on word embeddings and

ontology-based methods for word similarity: Linear combinations

outperform the state of the art, Engineering Applications of Artificial
Intelligence, 85 (2019) 645-665.

[53] A. Bakarov, A survey of word embeddings evaluation methods, arXiv

preprint arXiv:1801.09536, (2018).

[54] V. Lampos, B. Zou, I.J. Cox, Enhancing feature selection using word

embeddings: The case of flu surveillance, in, pp. 695-704.

[55] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing
the curse of dimensionality, in: Proceedings of the thirtieth annual ACM

symposium on Theory of computing, ACM, 1998, pp. 604-613.

[56] M.S. Charikar, Similarity estimation techniques from rounding algorithms,
in: Proceedings of the thirty-fourth annual ACM symposium on Theory

of computing, ACM, 2002, pp. 380-388.

[57] B. Schölkopf, A. Smola, K.-R. Müller, Kernel principal component
analysis, in: International conference on artificial neural networks,

Springer, 1997, pp. 583-588.

[58] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using
siamese bert-networks, arXiv preprint arXiv:1908.10084, (2019).

