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Abstract— Embedding learning is an essential issue in Natural 

Language Processing (NLP) applications. Most existing methods 

measure the similarity between text chunks in a context using pre-

trained word embedding. However, providing labeled data for 

model training is costly and time-consuming. So, these methods 

face downward performance when limited amounts of training 

data are available. This paper presents an unsupervised sentence 

embedding method that effectively integrates semantic hashing 

into the Kernel Principal Component Analysis (KPCA) to 

construct embeddings of lower dimensions that can be applied to 

any domain. The experiments conducted on benchmark datasets 

highlighted that the generated embeddings are general-purpose 

and can capture semantic meanings from both small and large 

corpora. 

 

Index Terms— Kernel Principal Component Analysis, Natural 

Language Processing, Semantic Hashing, Sentence Embedding. 

I.  INTRODUCTION 

     ORD embedding  refers  to   learning   distributed   word 

     representations to encode word semantics. It can be 

applied for various applications such as sentiment analysis, text 

classification, machine translation, named entity recognition, 

information retrieval, etc. [1-3]. Supervised word embedding 

achieves remarkable performance given large amounts of 

manually labeled data. However, they suffer some limitations: 

(1) Supervised word embedding approaches require large 

amounts of labeled data with word-to-meaning associations. 

Acquiring such labeled data can be expensive and time-

consuming, especially for specialized domains or low-resource 

languages. (2) Supervised word embeddings are often specific 

to the domain in which they are trained. They may not 

generalize well to new or different domains, limiting their 

applicability in diverse contexts. (3) Supervised methods rely 

on a predefined vocabulary, meaning that they may struggle to 

handle Out-Of-Vocabulary (OOV) words or rare terms that are 

not present in the training data. This can limit their usefulness 

in scenarios where new or specialized vocabulary is 

encountered. (4) The quality and biases of the labeled data used 

to train supervised word embeddings can influence the resulting 

embeddings. If the labeled data contains biases or errors, the 

embeddings may inherit those biases, leading to biased 

representations [4]. 
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By leveraging unlabeled data and extracting meaningful 

representations from it, unsupervised word embedding 

methods, e.g., Glove [5] and word2vec (Skip-Gram [6] 

version), overcome these limitations. These methods offer data 

efficiency, generalization, adaptability, and the potential to 

capture more nuanced semantic relationships, making them 

valuable for a wide range of NLP tasks and applications [7]. 

Although word embedding methods had been achieved great 

success, sentence embedding is necessary for natural language 

understanding systems. The methods for sentence 

representations can be grouped into two main categories [8]: 

Neural network-based methods. Based on the idea that 

words in similar contexts have a similar meaning, Avg. GloVe 

[9], IS-BERT [10], BERT-flow [11], and SBERT-WK [12] 

have been proposed using various pre-trained models inspired 

by neural network language modeling. An unsupervised 

method for generating domain-independent embeddings [13] 

was proposed using several recurrent network variants. An 

unsupervised method for paraphrase detection based on 

recursive autoencoders [14] was proposed. Overall, by learning 

from large amounts of text data, these pre-trained models 

capture the co-occurrence patterns and distributional properties 

of words, resulting in embeddings that encode meaningful 

semantic information. Meanwhile, by utilizing pre-trained 

embeddings as input features, models can leverage the 

knowledge acquired during pre-training, which often leads to 

improved performance and faster convergence. However, these 

pre-trained models have shortcomings [15-17], such as (1) to 

obtain appropriate performance, extensive text collections are 

needed for the training phase, (2) the words must have been 

seen in the training data before embedding, (3) selecting 

appropriate values for tunable parameters is a time-consuming 

process, (4) providing high-quality training sets can be difficult, 

expensive, or even impossible to acquire for some applications. 

The majority of well-known word embeddings rely on a 

specified vocabulary, therefore when OOV words need to be 

processed, they are typically ignored. In addition, (5) the 

majority of these models do not or, if they do, only partially 

take into account the morphology of the words contained inside 

the word vectors. The quality of document representations 

based on them may suffer as a result. Consequently, it is 

advantageous to create vector representations without 
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supervision.  

statistical methods, e.g., averaging the embeddings of words 

in a sentence, is an easy way of obtaining sentence embeddings 

but some defects, like neglecting the word order, realizing the 

inexpedient meaning of the sentence, and failure to adopt an 

appropriate approach when dealing with long sentences, 

causing utilizing sentence embedding instead of word 

embedding. Hash-based methods have received much more 

attention in recent years. Methods presented in [18-20] generate 

hash codes for short text segments while preserving semantic-

level similarities.  

Aiming to encode the sentences into the embedding vectors, 

the proposed method effectively combines the SimHash 

algorithm with the KPCA in an unsupervised manner; thereby, 

sentences that share semantic and syntactic properties are 

mapped into similar vector representations. SimHash is a 

computationally efficient method that finds applications in 

various fields, including information retrieval, plagiarism 

detection, duplicate content detection, and clustering of similar 

documents [21]. SimHash can be used to encode words as 

binary vectors (hash codes) in the context of word embedding, 

where words with similar semantic meanings have comparable 

binary representations. By comparing their hash values, this 

feature makes it beneficial for locating identical or almost 

identical things. It is possible to gauge how similar two 

SimHash values are by comparing the hamming distance (the 

number of different bits) between them. The smaller the 

hamming distance, the more similar the items are considered to 

be. Besides, KPCA is a nonlinear dimensionality reduction 

technique that can capture complex nonlinear relationships in 

the data. In the context of word embedding, KPCA can be used 

to transform the binary word representations obtained from 

SimHash into a continuous and low-dimensional space, while 

preserving their semantic similarities. KPCA enables finding 

low-dimensional representations that preserve the underlying 

structure of the data, even when the relationships are nonlinear. 

Here, KPCA is used to map the sentence embeddings to a 

lower-dimensional space that aligns better with a target task. 

This approach allows for the creation of word embeddings that 

capture semantic similarities between words. It provides a way 

to represent words in a continuous and low-dimensional space, 

facilitating downstream natural language processing tasks such 

as text classification, information retrieval, or semantic 

analysis. 

The advantages of the proposed method are that it can be 

applied to any size of text chunks: sentences, paragraphs, and 

documents. The created embeddings are also unresponsive to 

uncommon or infrequent words. In addition, with respect to the 

fundamental ideas of locality-sensitive hashing (LSH) methods, 

with SimHash being a variant, the robustness of the proposed 

method against small variations or noise can be considered [22]. 

The remainder of this paper is organized as follows: Section 

II provides related work. In Section III, the proposed method is 

described. Several experiments have been conducted on several 

datasets to evaluate the performance of the proposed method. 

These results have been discussed in Section IV, followed by a 

conclusion in Section V. 

.  RELATED WORK 

Unsupervised methods for word and sentence embedding 

provide valuable tools for understanding and processing natural 

language data without relying on labeled annotations. They 

offer a way to extract meaningful representations from vast 

amounts of unlabeled text, opening up possibilities for various 

downstream NLP applications and facilitating research in areas 

where labeled data is scarce or non-existent. The recent 

successes of unsupervised embeddings in several applications 

demonstrate the capability of these methods. Generally, 

unsupervised learning embedding methods can be categorized 

into two groups [23].  

Unsupervised learning embedding with adversarial 

training. For word embeddings, significant efforts have been 

made [24-26], but sentence embeddings remain to be 

discovered. Previous studies on sentence embedding have 

computed sentence embeddings by composing word 

embeddings [27, 28]. Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTMs) [29], recursive neural 

networks [30, 31], and Convolutional Neural Networks (CNNs) 

as deep learning-based models have a strong ability to capture 

the hidden correlations among words. Still, high complexity 

makes them time-consuming, especially for training large 

datasets. The Word2vec [6] was introduced for learning word 

vector representations. For representing large textual chunks, 

such as sentences and paragraphs, a generalized version of 

Word2vec, named Doc2vec [32] was proposed. Authors in [33] 

studied on CNNs for learning sentences. Authors in [34] 

introduced a method for unsupervised learning of a distributed 

sentence encoder. They trained an encoder-decoder model that 

tried reconstructing the surrounding sentences of an encoded 

passage. A sentence encoder model [35] trained on a large 

corpus was presented. Authors in [36] employed RNN and 

LSTM architectures.  

Although deep learning-based approaches generate suitable 

vectors for word representation, their performance is reduced 

when the model is trained on a small dataset due to several 

reasons [37-40]: (1) Deep learning models often have a large 

number of parameters, which allow them to capture complex 

patterns and relationships in the data. With a smaller dataset, 

there is a higher risk of overfitting, where the model memorizes 

the training examples instead of learning generalizable patterns. 

By giving a more varied and representative sample of the 

underlying data distribution, a larger dataset assists in reducing 

overfitting. (2) Effective generalisation of new data is a goal of 

deep learning models. The model can acquire more robust and 

nuanced representations, capturing a wider range of patterns 

present in the data, by being exposed to a larger variety of 

samples. This enhances the model's generalization and 

performance on fresh, novel examples. (3) Deep learning 

models often learn hierarchical representations of the input 

data. Each layer of the network learns to extract progressively 

more abstract and meaningful features. These representations 

become more accurate and informative as the model observes a 

larger and more diverse dataset. With a smaller dataset, the 

learned representations may not capture the full complexity of 
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the underlying data distribution. It is necessary to note that 

while there is no specific threshold for dataset size, it is 

generally observed that deep learning models tend to benefit 

from larger datasets. However, the precise impact of dataset 

size can vary depending on the complexity of the task, the 

model architecture, and other factors. It's important to strike a 

balance between the availability of data and the computational 

resources required to train deep learning models effectively. 

Unsupervised learning with similarity distribution. In [41] 

an unsupervised method for extractive multi-document 

summarization was proposed based on the centroid approach 

and the sentence embedding representations. Gupta [42] 

proposed an unsupervised model that allows composing 

sentence embeddings using word vectors and n-gram 

embeddings. In [43], Sent2Vec1 was introduced which is an 

unsupervised model allowing composing sentence embeddings 

using word vectors and n-gram embeddings. Besides, an 

unsupervised sentence embedding method [44] was proposed 

based on the discourse vectors in the random walk model for 

generating text. 

In conclusion, pre-trained language models based on neural 

networks have achieved significantly better results in various 

NLP tasks compared to traditional statistical methods and have 

revolutionized the field of NLP in recent years [45, 46]. There 

are some reasons why pre-trained language models have 

achieved better results: (1) pre-trained language models have 

the ability to capture a contextual understanding of words and 

sentences [47]. They learn to represent words based on their 

surrounding context, allowing them to capture the nuances of 

language and better handle word sense disambiguation. 

Traditional statistical methods often rely on simple word co-

occurrence statistics or bag-of-words representations, which 

lack the contextual understanding captured by neural language 

models. (2) Pre-trained language models are trained on massive 

amounts of text data, typically on large-scale corpora such as 

Wikipedia or web text [48]. This extensive pre-training enables 

the models to learn rich representations of words, phrases, and 

even entire sentences. In contrast, statistical methods often 

require manual feature engineering and rely on relatively 

smaller datasets, limiting their ability to capture complex 

language patterns. (3) Pre-trained language models can be fine-

tuned for specific downstream tasks with smaller task-specific 

datasets [49]. This transfer learning approach allows the models 

to leverage the knowledge learned during pre-training and adapt 

it to specific tasks [50]. This is particularly beneficial when 

labeled data for a specific task is limited. Traditional statistical 

methods often require task-specific feature engineering or 

training from scratch, which can be time-consuming and less 

effective with limited data. (4) Pre-trained language models can 

be adjusted or tailored to certain domains or specialized 

datasets, enabling them to excel even in tasks that are peculiar 

to those areas. They are extremely adaptable across a variety of 

fields and applications thanks to this versatility. Traditional 

statistical methods may require extensive manual feature 

engineering or specialized models for different domains, 

making them less flexible and scalable. (5) Pre-trained language 

models excel at capturing semantic relationships between 

words and understanding various aspects of language, such as 

synonymy, antonymy, analogies, and sentence-level coherence. 

They can generate more meaningful and contextually 

appropriate word embeddings or sentence representations. 

Statistical methods, while useful for some tasks, often struggle 

to capture these higher-level semantic relationships effectively.  

Statistical methods have been used in NLP for several 

reasons, despite the advent and success of neural network-based 

approaches [51]. Statistical methods often provide more 

interpretability compared to neural network-based models. 

They allow researchers and practitioners to understand the 

underlying statistical principles and assumptions used in the 

models [52]. This interpretability can be crucial in domains 

where explainability and transparency are required, such as 

legal or regulatory contexts [53]. Statistical methods are often 

simpler in terms of model architecture and implementation. 

They tend to have fewer parameters and require fewer 

computational resources compared to neural network-based 

models. This simplicity makes them computationally efficient 

and suitable for scenarios with limited computational power or 

memory constraints. Statistical methods can work well with 

limited amounts of data. Even with limited datasets or in 

situations where obtaining huge amounts of labeled data is 

difficult or expensive, they can nevertheless produce good 

results. Contrarily, for neural network-based models to perform 

to their full potential, large-scale training datasets are often 

necessary. Manual feature engineering is frequently used in 

statistical approaches, where domain-specific knowledge and 

skill can be used to create useful features [54]. This feature 

engineering approach enables users to add certain language or 

contextual data to the model, improving performance for some 

jobs. Contrarily, models built on neural networks may 

automatically learn characteristics from raw data, which may 

not always capture the desired domain-specific information. 

Besides, certain applications have specific constraints or 

requirements that make statistical methods more suitable. For 

example, in some low-resource or real-time applications, the 

simplicity, speed, and low memory footprint of statistical 

methods make them preferable over complex neural network 

models. 

It's important to note that while statistical methods have their 

advantages, neural network-based approaches have made 

significant advancements and achieved state-of-the-art results 

in various NLP tasks. The choice of method depends on factors 

such as the specific task, available resources, interpretability 

requirements, and the trade-off between performance and 

complexity. 

.  PROPOSED METHOD 

In this section, a new unsupervised method for sentence 

embedding is introduced by incorporating the SimHash 

algorithm into the KPCA. 

As shown in Fig. 1, the pre-processed sentences are 

extracted from each document and accumulated into a 

comprehensive set of unique sentences. The sentence pre-

processing involves several steps such as tokenization, 

stemming, removing stop words, and lowercasing each 
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sentence. Next, the task of generating hash binary codes 

(fingerprints) is done for each word of a sentence using the 

SimHash algorithm. SimHash, as one of the extensions of the 

Locality Sensitive Hashing (LSH) [55] algorithm for large-

scale real-valued data, was first introduced by Charikar [56].  

 

 
Fig. 1. The proposed sentence embedding pipeline. 

 SimHash is designed to produce similar hash values for 

similar inputs, making it suitable for identifying similar items 

based on their hashes. It produces a compact representation of 

high-dimensional vectors by using random projections. Then, it 

applies a weighting scheme to each feature and combines them 

to create a binary fingerprint. The fingerprint is obtained by 

comparing the weighted feature values with a threshold and 

setting the corresponding bit in the hash value based on the 

result of the comparison. 

For word 𝑤, the SimHash function is defined as follows. 

ℎ(𝑤) = 𝑠𝑖𝑔𝑛(𝜈𝑡𝑤) = {
+1     𝑖𝑓 𝜈𝑡𝑤 ≥ 0
−1     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

where 𝜈𝑡 is the transpose of the randomly generated vector 𝜈. 

Now, given a set containing 𝑤 words extracted from a sentence, 

SimHash is used to generate d-bit fingerprints ℎ ∈ 𝐻 ≡

{−1,1}𝑑; meanwhile, simple word averaging is performed to 

obtain sentence embeddings. 

Afterward, given a set containing 𝑛 sentences extracted from 

a document, the similarities between sentences in the original 

spaces and transformed spaces are calculated using similarity 

function presented in Eq. (2): 

𝑠𝑖𝑚(𝑠𝑖 , 𝑠𝑗) = 𝑒−𝑑𝑖𝑠𝑡(𝑠𝑖,𝑠𝑗);   ∀𝑖, 𝑗 ∈ ℝ𝑛 (2) 

where 𝑠𝑖 represents a vector 𝑠𝑖 = [𝑠𝑖1, 𝑠𝑖2, ⋯ , 𝑠𝑖𝑑], where 𝑑 is the 

number of the bits of the fingerprints and dist is the Hamming 

distance of two fingerprints. The similarity matrix sim contains 

n n-dimensional elements. This matrix is obtained by 

computing Eq. (2) to all fingerprint pairs, as shown below. 

𝐬𝐢𝐦 = [
𝑠𝑖𝑚(𝑠1, 𝑠1) ⋯ 𝑠𝑖𝑚(𝑠1, 𝑠𝑛)

⋮ ⋱ ⋮

𝑠𝑖𝑚(𝑠𝑛 , 𝑠1) ⋯ 𝑠𝑖𝑚(𝑠𝑛 , 𝑠𝑛)
]

𝑛×𝑛

 

To find the distributed representation of the sentences, 

KPCA is employed. By exploiting PCA, obtained fingerprints 

from the previous step can be converted to the low dimensional-

vector space where the dimensions are features that describe 

semantic properties. 

Using the kernel trick and nonlinear mapping function 𝜙, 

PCA maps each element of the similarity matrix sim onto a 

high-dimensional feature space to obtain the principal 

components from that space [57]. The term ‘kernel’ refers to 

the dot product of the projections of the 𝑠𝑖𝑚(𝑠𝑖 , 𝑠𝑗) under 𝜙. 

𝜅(𝑠𝑖 , 𝑠𝑗) = 𝜙(𝑠𝑖)𝜙(𝑠𝑗)𝑇 (3) 

The kernel matrix 𝜿 is computed by applying a nonlinear 

kernel function to the similarity matrix sim. The proposed 

method employs the Gaussian Radial Basis Function (RBF) as 

a kernel. 

𝜅(𝑠𝑖 , 𝑠𝑗) = 𝑒
−𝛾‖𝑠𝑖−𝑠𝑗‖

2

2

 (4) 

𝛾 =
1

2𝜎2
 (5) 

where 𝜎 is the variance of the data. If the data has a high 

variance, it suggests that the data points are spread out and have 

a wide range of values. In such cases, a smaller 𝛾 value may be 

suitable to capture the global structure and smooth out the 

representations. This prevents overfitting to local patterns and 

ensures that the embeddings capture the broader trends and 

variations in the data. On the other hand, if the data has low 

variance, it implies that the data points are more tightly 

clustered or have limited variation. In such scenarios, a larger 𝛾 

value may be appropriate to capture finer details and localized 

patterns in the data. 

The RBF kernel offers several benefits when used in KPCA: 

(1) The RBF kernel has the property of universal 

approximation, which means it can approximate any continuous 

function given enough basis functions. This property allows the 

RBF kernel to represent complex and diverse data patterns 

accurately. By employing a suitable number of basis functions, 

KPCA with RBF kernel can effectively model and approximate 

the underlying structure of the data. 

(2) The RBF kernel allows KPCA to capture nonlinear 

relationships in the data. It maps the original data into a higher-

dimensional feature space, where linearly inseparable patterns 

can be separated more effectively. This flexibility is particularly 

useful when dealing with complex and nonlinear data 

distributions, enabling KPCA to discover hidden structures and 

capture intricate relationships. 

(3) The RBF kernel produces smooth and continuous 

representations in the feature space. It assigns higher weights to 

points that are closer together, gradually decreasing their 
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influence as the distance increases. This characteristic ensures 

that nearby data points have similar representations, preserving 

local relationships and maintaining the overall continuity of the 

embeddings. 

(4) The RBF kernel is less sensitive to outliers compared to 

other kernels, such as the linear kernel. Outliers typically have 

less influence on the resulting embeddings when using the RBF 

kernel, allowing KPCA to focus more on the underlying data 

distribution. This robustness to outliers helps in obtaining more 

reliable and stable representations, particularly when dealing 

with noisy or contaminated data. 

To obtain principal components in the kernel space, the 

covariance of the kernel matrix 𝜿 should be maximized by 

solving Eq. (6). 

𝐶𝜈 = 𝜆𝜈 (6) 

where 𝐶 is the covariance matrix (see Eq. (7)), 𝜆 is an arbitrary 

eigenvalue, and 𝜈 is its corresponding eigenvector.  

𝐶 =
1

𝑛
𝜿𝜿𝑇 (7) 

Combining Eqs. (7) and (4), and substituting into Eq. (6), Eq. 

(8) is taken as follows: 

𝜿𝛼 = 𝑛𝜆𝛼 (8) 

where 𝜶 = (𝛼1, 𝛼2, ⋯ , 𝛼𝑛)𝑇 denotes the column vector such 

that the orthogonal eigenvector 𝜈 of the covariance matrix 𝐶 

satisfies 

𝜈 = ∑ 𝛼𝑖𝜙(𝑥𝑖)

𝑛

𝑖=1

 (9) 

To obtain top-k principal components, let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥
𝜆𝑘 ≥ ⋯ ≥ 𝜆𝑛 show the first k eigenvalues of 𝜿 and 

𝛼1, 𝛼2, ⋯ , 𝛼𝑛 the corresponding complete set of eigenvectors 

obtained by Eq. (8). The corresponding eigenvectors 

𝜈1, 𝜈2, ⋯ , 𝜈𝑘  of matrix 𝐶 are calculated by Eq. (9). At the end 

of the proposed method, the employed projection matrix 𝑷 is 

obtained by selecting k eigenvectors and dividing them by the 

corresponding eigenvalues as follows: 

𝑷 = [
𝜈1

𝜆1

,
𝜈2

𝜆2

, ⋯ ,
𝜈𝑘

𝜆𝑘

] (10) 

Now, arriving a new sentence 𝑠𝑡, first, it is converted to the 

d-bit SimHash code; then, the similarity function of this 

sentence against all other sentences is calculated by considering 

the kernel function as follows: 

𝜏𝑡 = 𝜅(𝑠𝑖𝑚(𝑠𝑡 , 𝑠𝑖));   ∀𝑖 ∈ ℝ𝑛 (11) 

The product of 𝜏𝑡 with the projection matrix 𝑷 generates the 𝑘-

dimensional KPCA embedding 𝜌𝑡 = 𝑷𝑇𝜏𝑡. 

V. EXPERIMENTAL RESULTS 

In this section, the experiments for the evaluation of the 

proposed method are described. Some experiments have been 

conducted over well-known real-world datasets. The selected 

datasets are introduced in subsection A. The evaluation 

procedure is covered in subsection B. The experimental results 

and their interpretations are described in subsection C. 

A.  Datasets 

The proposed method is evaluated on widely-used datasets 

STSB (Semantic Textual Similarity Benchmark) [36], SICK 

(Sentences Involving Compositional Knowledge) [37], and 

STS (Semantic Textual Similarity) tasks 2012 - 2016 [38-42]. 

These datasets consist of sentence pairs with labeled semantic 

similarity scores ranging from 0 to 5, where a higher score 

means higher semantic similarity. The STSB dataset has been 

used as part of shared tasks in the SemEval (Semantic 

Evaluation) series, which is a series of workshops focused on 

semantic analysis and NLP tasks. It contains around 7,500 

sentence pairs. The SICK dataset consists of approximately 

10,000 sentence pairs across multiple tasks, including semantic 

relatedness, paraphrase detection, and textual entailment. The 

STS datasets have been utilized in various SemEval shared 

tasks. The STS 2012, STS 2013, and STS 2014 datasets contain 

1,500 sentence pairs. The STS 2015 dataset comprises a total of 

5,000 sentence pairs across the various subtasks including STS 

MSRvid (video descriptions), STS MSRpar (online article 

snippets), STS OnWN (WordNet glosses), STS SMTeuroparl 

(Europarl sentences), and STS Tweet (Twitter messages). The 

STS 2016 dataset comprises a total of 12,304 sentence pairs 

across the different subtasks including answer (sentence pairs 

from community question-answering websites), headlines 

(news headlines), plagiarism detection, and question-question 

similarity. 

B.  Evaluation Procedure 

Inspired by [58], Procedure 1 is carried out to evaluate the 

performance of the proposed method. Accordingly, the cosine 

similarity of each pair of the sentence embedding and the gold 

label is calculated. For a pair, golden semantic similarity ranges 

from 0.0 to 5.0, while cosine similarity ranges from -1.0 to 1.0. 

To overcome the range difference, rank-based Spearman’s 

correlation coefficient is employed. 

 
PROCEDURE I 

EVALUATION PROCEDURE 
For each sentence pair do 

1. Perform pre-processing stage (tokenization, stemming, 
removing stop words, and lowercasing each sentence). 

2. Derive sentence embeddings by the proposed method. 
3. Compute the cosine similarity score as the predicted 

similarity. 
4. Compute Spearman’s rank correlation coefficient 

between the predicted similarity and gold standard 
similarity scores as the evaluation metric. 

End for 
 

Spearman's rank correlation is a statistical measure that 

quantifies the strength and direction of the monotonic 

relationship between two variables. It focuses on the ordinal 

relationship, where the variables may not have a linear 

association but still exhibit a consistent ordering pattern. 

Spearman's correlation coefficient is calculated by first ranking 

the values of each variable and then calculating the Pearson 
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correlation coefficient between the ranks. It ranges between -1 

and 1, where: 

 A coefficient of +1 indicates a perfect monotonic increasing 

relationship, where higher ranks of one variable are 

consistently associated with higher ranks of the other 

variable. 

 A coefficient of -1 indicates a perfect monotonic decreasing 

relationship, where higher ranks of one variable are 

consistently associated with lower ranks of the other 

variable. 

 A coefficient of 0 indicates no monotonic relationship 

between the variables. 

Spearman's correlation coefficient is useful when dealing 

with non-linear relationships or variables measured on an 

ordinal or ranked scale. It is less sensitive to outliers compared 

to Pearson's correlation coefficient and can provide insights into 

the direction and strength of the relationship, even if the 

relationship is not strictly linear. 

C.  Results 

For evaluation, the following sentence embedding methods 

are considered competing methods. 

 TF-IDF-SVD. A sentence is represented by a sparse vector  

of TF-IDF. Then, the vector is reduced by SVD. This 

method can uncover latent semantic relationships in the text 

data. The reduced-dimensional representation may reveal 

hidden associations and similarities between terms and 

documents that are not immediately apparent in the original 

 space. 

 Smooth Inverse Frequency (SIF) [44]. It is an 

unsupervised sentence embedding that employs a 

weighted average of the word vectors. Then, modify them 

using PCA/SVD. SIF incorporates Inverse Document 

Frequency (IDF) weighting to down-weight frequently 

occurring words in the embedding process. This helps to 

mitigate the impact of common and less informative 

words, enabling the focus on more important and 

meaningful terms in the text. SIF does not explicitly 

consider the word order or sentence structure in the 

embedding process. It treats each sentence as a bag of 

words, potentially limiting its ability to capture nuanced 

semantic relationships that depend on word order or 

syntax. SIF focuses primarily on individual word 

embeddings and their IDF weighting. It does not explicitly 

capture the contextual information or relationships 

between words within a sentence, which can be crucial for 

certain text-understanding tasks. 

Table  displays Spearman's rank correlation of the methods. 

As observed, the proposed method attains the highest 

Spearman's rank correlation for STS12 and the lowest 

Spearman's rank correlation for STSB. In Table , the Pearson 

correlation values of the methods are presented. The results 

demonstrate that the proposed method achieves the highest 

correlation values for all datasets when compared with the 

competing methods. 

TABLE I 

Spearman’s Rank Correlation 

Method STSB SICK STS12 STS13 STS14 STS15 STS16 

TF-IDF-SVD 31.03 42.13 52.92 49.57 41.31 31.23 52.12 

SIF(PCA) 56.97 51.04 57.31 58.03 58.27 50.82 59.65 

Proposed method 61.25 62.35  62.18  69.63  61.33  61.15  62.19  

 
TABLE II 

Pearson Correlation Values 

Method STSB SICK STS12 STS13 STS14 STS15 STS16 

TF-IDF-SVD 36.05 44.28 57.29 48.82 41.18 34.83 53.23 

SIF(PCA) 58.37 50.16 60.26 58.29 57.97 52.17 58.82 

Proposed method 63.17 64.23 64.03 70.38 62.60 63.20 61.17 

D.  Time complexity 

The time complexity of SimHash can be approximated as 

𝑂(𝑑). This is because SimHash involves iterating over each 

feature or dimension of the data item and performing bitwise 

operations. It scales linearly with the number of dimensions, 

making it computationally efficient for high-dimensional data. 

The time complexity of KPCA depends on the number of 

data points (n) and the dimensionality of the data (d). The 

primary computational bottleneck of KPCA lies in the 

computation of the kernel matrix. The time complexity for 

computing the kernel matrix in KPCA is 𝑂(𝑛2𝑑). This is 

because, for each pair of data points, a kernel function needs to 

be evaluated, resulting in 𝑛2 evaluations. Furthermore, each 

evaluation typically involves computing the dot product 

between two d-dimensional vectors, which has a time 

complexity of 𝑂(𝑑). After computing the kernel matrix, KPCA 

performs eigenvalue decomposition or singular value 

decomposition (SVD) on the matrix. The time complexity of 

eigenvalue decomposition or SVD is 𝑂(𝑛2𝑑).  

Overall, the time complexity of the proposed can be 

approximated as 𝑂(𝑑) + 𝑂(𝑛2𝑑) + 𝑂(𝑛2𝑑). 

V.  CONCLUSION AND FUTURE WORK 

For embedding learning tasks, techniques like Word2Vec, 

GloVe, or BERT are commonly used, as they can preserve 

semantic and syntactic relationships in a more nuanced way. 

However, they cannot represent well on rare words with little 

contextual information. To solve this issue, this paper proposes 

a new unsupervised method for learning sentence embeddings 
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and generating new vectors for unseen sentences or even for 

sentences that contain deliberately obfuscated words. The 

proposed method simplifies the sentence embedding 

computation by integrating SimHash with the KPCA. 

Regarding the KPCA, the sentence representations are 

transformed into a lower-dimensional space while preserving 

nonlinear relationships. 

Employing SimHash is beneficial since it is computationally 

efficient, especially when dealing with large datasets. It can 

accurately estimate the similarity between two inputs based on 

the hamming distance between their hash values. However, 

SimHash generates fixed-length hash values, which may lead 

to a loss of granularity in representing the original data. Fine-

grained differences between inputs might be disregarded in the 

hash representation. Also, SimHash does not capture the 

semantic meaning of words or the context in which they appear. 

It treats each word or feature independently, potentially leading 

to limitations in applications where a deeper understanding of 

language semantics is required. While SimHash can tolerate 

some level of noise, excessive noise or significant perturbations 

in the data may adversely affect its performance. It's essential 

to preprocess the data appropriately and ensure that the noise 

level is within reasonable limits for SimHash to provide 

accurate similarity measurements. 

Experiments performed on seven benchmark datasets have 

shown that it gains the highest Spearman's rank for STS12 and 

the lowest for STSB datasets. 

In future work, the authors intend to focus on weighted 

averaging for representing short phrases. Furthermore, since 

different kernels may produce diverse embeddings and capture 

various aspects of the data, kernel learning will be another issue 

that should be investigated. 
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