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Abstract— Time series forecasting is important in many fields 

including energy management, power market, and engineering. 

Therefore, it is vital to introduce new algorithms that can predict 

time series with high accuracy. Emotional networks have recently 

been introduced based on emotional processes occurring in the 

mammalian brain. They have shown desirable numerical 

properties such as fast response, simple structure, learning 

capability, and the ability to accurately approximate and address 

time and complexity issues. However, their use in time-series 

prediction is at the primary stages. Therefore, we are inspired to 

use emotional models in the time-series prediction problems. 

Specifically, we propose to use a continuous radial basis emotional 

neural network (CRBENN) for time-series prediction. The normal 

rules of the emotional brain are used to update the network 

weights and the gradient descent algorithm is used to update the 

radial basis parameters. The proposed method is compared with 

two neuro and fuzzy methods in three benchmark problems. The 

results show the lower prediction error of the proposed method. 

 

Index Terms— Time-series prediction, emotional neural networks, 

radial basis function, gradient descent algorithm. 

I. INTRODUCTION 

ime-series prediction is the process of establishing models 

based on historical data and mining the dynamic 

characteristics of nonlinear systems to predict future values 

[1],[2]. It plays a crucial role in various fields such as economy, 

energy load forecasting, and disease outbreak prediction. 

Hence, introducing powerful algorithms with acceptable 

accuracy in the presence of uncertainties provides valuable 

insights for understanding and predicting real-world dynamic 

phenomena. Emotional neural networks (ENNs) are a new kind 

of neural network (NN) based on the emotional process in the 

mammalian brain [3]. They have shown desirable numerical 

properties such as fast response, simple structure, learning 

ability, and robustness to uncertainties [4]. However, there are 

only limited works on their employment in time-series 

prediction. Here, we aim to evaluate the performance of 

emotional models as time-series predictors and evaluate their 

applications in forecasting some standard benchmarks. 

Fuzzy systems and neural networks have illustrated 

promising capabilities such as approximation property and 

learning ability. They are employed in various decision-making 

and control applications such as robot control [5]-[6], COVID-

19 spread control [7], and forecasting traffic congestion on the 

roads [8]. Additionally, because of the excellent learning ability 

                                                           
1: Faculty of Electrical and Computer Engineering, Semnan University, 
Semnan, Iran. 

and uncertainty-handling property of neural networks and fuzzy 

systems, they are employed in various time series prediction 

methods. For instance, in [9], a two-stage prediction model is 

introduced for multivariate time series prediction based on 

evolutionary fuzzy cognitive maps (FCMs) enhanced by 

genetic algorithms. In [10], the fuzzy wavelet neural network 

system is developed for time series prediction. In [2], a new 

time-series prediction method improves the traditional long-

short-term memory (LTSM) recurrent neural network, which 

reduces the number of network parameters. In [11], a new 

embedding convolutional block attention module is introduced 

based on a temporal convolutional network. This network is 

used for the prediction of chaotic time series and shows more 

stable training and better parallelization compared with the 

LSTM network and hybrid Convolutional Neural Network-

LSTM (CNN-LTSM). There are also other fuzzy/neuro-based 

time-series forecasting methods such as fast adaptive gradient 

RBF (GRBF) network [12], repetitive fuzzy systems [13], 

second-order Takagi Sugeno Kang (TSK) fuzzy systems using 

Adaptive Neuro-Fuzzy Inference System  (ANFIS) [14], echo 

state networks (ESNs) [15]–[17], and fuzzy neural networks 

(FNN) [18]. 

According to LeDoux's argumentation, emotional stimuli 

such as fear can bring about quick reactions, usually when there 

is no chance for the rational mind to process the danger 

[19][20]. In the emotional nervous system of mammals, there 

are two types of excitatory and inhibitory mechanisms. The 

amygdala is responsible for stimulus learning and consists of 

several sensory nodes and a learning input. The orbitofrontal 

cortex (OFC) is responsible for the inhibitory task that controls 

the output. Inspired by this emotional nervous system, the 

Brain-Emotional Learning (BEL) model is proposed by Moren 

and Balkenius [21] as a class of computational intelligence 

models that mimic the structural and functional aspects of the 

emotional brain. This model consists of four main parts: the 

amygdala, the thalamus, the sensory cortex, and OFC. The 

additional connection from the thalamus to the amygdala was 

later omitted in [22] due to harsh simulation results and would 

interfere with normal learning.  

The ENNs address the time and complexity issues associated 

with computational intelligence models such as neuro/fuzzy 

methods [23]. Hence, until now, emotional models have been 

widely used in many areas of control and decision-making, 

showing simplicity, a low computational burden, fast response 

to changes, and higher accuracy. For instance, they are 
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employed for a predictive alert system [24], aerospace launch 

vehicles during atmospheric flight [25], controlling nonlinear 

systems [26], electrically heated micro-heat exchangers [27], 

and pattern recognition problems [28]. 

Different kinds of emotional neural networks are also 

suggested. For instance, in [29] a prototype-incorporated 

emotional neural network is introduced, which includes both 

the prototype- and adaptive-learning theories into a unified 

framework. In [30], a hybrid genetic algorithm-emotional 

artificial neural network (GA-EANN) is designed and applied 

in water quality index modeling. The method resulted in a 

higher performance compared with two competing approaches. 

In [31], a limbic-based artificial emotional neural network 

(LiAENN) is presented and demonstrates a higher accuracy 

than other applied emotional networks in pattern recognition 

problems, facial detection, and emotion recognition. Finally, 

the study in [32], presents a control system based on an 

evolutionary emotional neural network for active power filters 

to improve power quality. 

Recently, few studies have used emotional models for time-

series forecasting. In [33], the authors designed a winner-take-

all emotional neural network (WTAENN) approach with 

universal approximation property. They use it for a wide variety 

of problems, including function approximation, face 

recognition, and time series problems. In [34], the authors 

present an emotionally inspired architecture for chaotic time 

series prediction that consists of one recurrent and two feed-

forward adaptive neuro-fuzzy networks. This model is 

investigated to predict space storms. In [35], a network is 

introduced that uses the radial basis emotional neural network 

(RBENN) in [36] based on adaptive inertia weight 

comprehensive learning and particle swarm optimization 

algorithm. The model is then investigated in time series 

prediction and a real wastewater treatment system. In [37], the 

Neo-Fuzzy integrated Adaptive Decayed Brain Emotional 

Learning (NF-ADBEL) network is presented. This network is 

capable of predicting online time series with shorter update 

intervals and offers features such as fast learning, accuracy, 

simplicity, and less computational complexity.  

Few of the works have investigated mathematical properties 

of the emotional models such as the universal approximation 

property and the continuity and differentiability of the network. 

For example, the approximation property is proved for 

WTAENN [25] based on a multi-layered perceptron. Also, the 

radial basis emotional neural network (RBENN) [28] follows 

the approximation property based on WTAENN. However, 

both WTAENN and RBENN have discrete outputs. In [4], the 

Continuous Radial Basis Emotional Neural Network 

(CRBENN) is designed, which approximates the characteristics 

of the Radial Basis Function Neural Networks (RBFNN). It also 

provides the continuity and differentiation of the output related 

to the network weights inherited from the RBFNNs. 

 Therefore, we aim to evaluate the emotional models’ 

capabilities in prediction problems and propose to use the 

previously established CRBENN for time-series prediction. 

The weights of the amygdala and OFC are updated using the 

ordinary laws of emotional networks. The amygdala update 

rules also include a forgetting factor. The parameters of the 

RBFs (centers and the standard deviation) are updated using the 

gradient-descent algorithm. The work is among the few studies 

that use emotional models for time-series forecasting. In 

particular, CRBENN has not yet been incorporated for time-

series forecasting problems. The proposed method is evaluated 

on three time-series forecasting problems, and the results show 

lower prediction error compared to the two neuro and fuzzy 

approaches.  

The rest of the paper is organized as follows: Section II 

introduces the preliminaries on CRBENN. Time-series 

prediction method using CRBENN is presented in Section III. 

Simulation results are provided in Section IV. Finally, 

conclusions are drawn in Section V. 

II. THE STRUCTURE OF CRBENN  

In this section, CRBENN is briefly described. The overall 

structure of CRBENN is shown in Fig. 1. As can be seen, 

CRBENN has four main subsystems: the thalamus, the 

amygdala, the sensory cortex, and OFC. The input first enters 

the thalamus, where the main functions are constructed, as 

follows: 

𝜑𝑗 = exp (− [
(𝑥 − 𝜇𝑗)

2

𝜎𝑗
2 ]) , 𝑗 =  1, … , 𝑘  (1) 

Where 𝑥 ∈  ℝ𝑛 is the input vector, 𝜎𝑗  and 𝜇𝑗 ∈  ℝ
𝑛  are the 

corresponding smoothing factor and mean of the 𝑗𝑡ℎ neuron, 

respectively, and 𝑘 ∈ ℕ denotes the total number of nodes. 

The sensory cortex then receives vector input from the 

thalamus and distributes it into the amygdala and OFC. The 

outputs of the amygdala and OFC are calculated through the 

sensory cortex path as (2) and (3), respectively: 

𝐸𝑎 =∑𝑣𝑗𝜑𝑗

𝑘

𝑗=1

= 𝑣𝑇𝜑, (2) 

𝐸𝑜 =∑𝑤𝑗𝜑𝑗

𝑘

𝑗=1

= 𝑤𝑇𝜑, (3) 

where 𝑣𝑗 (𝑗 = 1,… , 𝑘)  is  the weight of the 𝑗𝑡ℎ node in the 

amygdala and 𝑤𝑗   (𝑗 = 1,… , 𝑘)  is the weight of the 𝑗𝑡ℎ node in 

OFC. The weight vectors are denoted as 𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑘]𝑇 ∈

ℝ𝑘   and  𝑤 = [𝑤1, 𝑤2, … , 𝑤𝑘]𝑇 ∈ ℝ𝑘 and  𝜑 =

[𝜑1, 𝜑2, … , 𝜑𝑘]𝑇 ∈ ℝ𝑘 is the vector of radial basis functions. As 

can be seen, in CRBENN the amygdala does not have the extra 

thalamic connection of RBENN in [28] and both the amygdala 

and OFC have the same number of nodes. 

The output of CRBENN is calculated as follows:  

𝐸 =  𝐸𝑎 − 𝐸𝑜 . (4) 

This subtraction implements the inhibitory task of OFC in 

preventing the inappropriate responses of the amygdala. Using 

(2) and (3), the output of CRBENN, is calculated as follows: 
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𝐸 =∑𝑣𝑗𝜑𝑗

𝑘

𝑗=1

−∑𝑤𝜑𝑗

𝑘

𝑗=1

=∑(𝑣𝑗 − 𝑤𝑗)

𝑘

𝑗=1

𝜑𝑗

= 𝑣𝑇𝜑 − 𝑤𝑇𝜑. 

(5) 

Remark 1 [4]: CRBENN has the universal approximation 

property, which states that for a given 𝜀 ∈ ℝ and a sufficiently 

large number 𝑘, any smooth nonlinear function 𝑓(𝑥):ℝ𝑛 → ℝ 

on the compact set Ω ∈ ℝ𝑛, there exists the ideal CRBENN 

weights 𝑣∗ ∈ ℝ𝑘 and  𝑤∗ ∈ ℝ𝑘 such that: 

𝑓(𝑥) = 𝑣∗𝑇𝜑 −𝑤∗𝑇𝜑 + 𝜀. (6) 

The universal approximation property of CRBENN is easily 

established using the similar property of RBF networks. This 

proof is not limited to a specific kernel function and includes 

any symmetric radial basis kernel that can be considered as a 

Thalamus node [4]. 

Remark 2: The CRBENN has some properties that 

distinguish it from the ordinary RBF networks. First, CRBENN 

has two paths from the input to the output. One is through the 

sensory cortex to the OFC and the other is through the 

amygdala. The amygdala indeed reacts to the input signal, while 

OFC, functioning as an inhibitor, eliminates the unsuitable 

portion of the response. The OFC exclusively processes 

mapped data and adjusts its weights in a manner akin to 

RBFNN. The situation differs for the Amygdala. There exists a 

limitation on the adaptation rules governing the weights of the 

amygdala, requiring them to remain non-decreasing. These 

differences lead CRBENN to have a higher level of accuracy 

compared to RBFNN as is stated for similar emotional networks 

in [31][23]. CRBENN also omits the extra connection from the 

thalamus to the amygdala because of the harsh results reported 

in [22] resulting in a continuous and differentiable output of 

CRBENN concerning the weights.   

Fig. 1. The structure of CRBENN [4]. 

III. TIME-SERIES PREDICTION USING CRBENN 

a. Preliminaries  

A time series is a sequence of data points collected over 

successive time intervals. It represents the evolution of a 

variable or phenomenon over time.  

Let 𝑥(𝑖) (𝑖 = 1,2,3, … ) be the time series generated by the 

appropriate equation. Given 𝑥(𝑖 − 𝑛 + 1), 𝑥(𝑖 − 𝑛 +
2), … , 𝑥(𝑖), where 𝑛 is a positive integer, the task is to 

determine a mapping from [𝑥(𝑖 − 𝑛 + 1), 𝑥(𝑖 − 𝑛 +

2), … , 𝑥(𝑖)]  ∈  ℝ𝑛 to [𝑥(𝑖 + 1)]  ∈  ℝ. Therefore, the input 

vector to the emotional network can be represented as: 

𝑥 = [𝑥(𝑖 − 𝑛 + 1), 𝑥(𝑖 − 𝑛 + 2), … , 𝑥(𝑖)]𝑇 . (7) 

b. Adaptive rules for CRBENN parameters 

Here, the updated rules are made for CRBENN parameters. 

The first update rules of the emotional brain are used for the 

network weights (i.e., amygdala and OFC), and the gradient-

descent algorithm is used for the RBFs parameter in the 

thalamus.  

The updated rules of the amygdala also include a forgetting 

factor based on [30]. Hence, the learning rules for the amygdala 

and OFC weights are considered respectively as follows: 

𝑣𝑗(𝑖 + 1) = (1 − 𝛾)𝑣𝑗(𝑖) + 𝛼 max(𝑥(𝑖) − 𝐸𝑎(𝑖),0) 𝜑𝑗 ,               

  𝑗 =  1,2… , 𝑘, 
(8) 

𝑤𝑗(𝑖 + 1) = 𝑤𝑗(𝑖) + 𝛽(𝐸(𝑖) − 𝑥(𝑖)) 𝜑𝑗,                                          

  𝑗 =  1,2… , 𝑘, 
(9) 

where 𝛼 and 𝛽 are the learning rates and 𝛾 is a small positive 

constant indicating the forgetting factor that happens in the 

amygdala [38]. The terms 𝐸(𝑖) and 𝑥(𝑖) represent the output of 

CRBENN and the desire value of time-series in the previous 

step, respectively. Note that in (7) the max operator causes the 

monotonic learning of the basic update rules of the emotional 

brain.  

The gradient-descent algorithm also updates the mean and 

the standard deviation of the RBFs in (1). First, the error is 

defined as follows: 

𝑒(𝑖) =
1

2
(𝐸(𝑖) − 𝑥(𝑖))2.  (10) 

Using the chain rules in partial derivative, the update rules 

are attained as follows: 

𝜇𝑗(𝑖 + 1) = 𝜇𝑗(𝑖) −  𝜆1(𝐸(𝑖) − 𝑥(𝑖)) (𝑣𝑗(𝑖) −

𝑤𝑗(𝑖))𝜑𝑗
2(𝑥(𝑖)−𝜇𝑗(𝑖))

𝜎𝑗
2(𝑖)

,           𝑗 =  1,2… , 𝑘, 
(11) 

𝜎𝑗(𝑖 + 1) = 𝜎𝑗(𝑖) − 𝜆2(𝐸(𝑖) − 𝑥(𝑖)) (𝑣𝑗(𝑖) −

𝑤𝑗(𝑖))𝜑𝑗
2(𝑥(𝑖)−𝜇(𝑖))

2

𝜎𝑖
3(𝑖)

,             𝑗 =  1,2… , 𝑘, 
(12) 

where 𝜆1 and 𝜆2 are the learning rates of the mean and 

smoothing factor, respectively. 

IV. SIMULATION RESULTS 

In this section, we evaluate the performance of the proposed 

method on three time-series forecasting problems: sinusoidal, 

Mackey–Glass, and Lorenz time series. The proposed method 

is compared with RBFNN-based and fuzzy-based methods. 

Similar to the proposed method, RBFNN and fuzzy parameters 

are updated using the gradient-descent algorithm. We use the 

Mean Squared Error (MSE) index as the measurement criterion, 

which is calculated as follows: 

 



10                                                                                                         Volume 2, Number 4, February 2023 

 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑇(𝑖) − 𝐸(𝑖))2
𝑁

𝑖=1

, 
 

(13) 

where 𝑁 shows the number of samples. Also, 𝑇 and 𝐸 

indicate the target value and predicted value of the network, 

respectively. For a fair comparison, all experiments are 

programmed in MATLAB R2013a by using a PC with Intel(R) 

Core(TM) i3-2330M CPU @ 2.20GHz and 10 GB RAM. 

A. Example 1: a sinusoidal time-series example 

In this example, the predictive capability of the proposed 

system is investigated by identifying the nonlinear dynamics 

system as follows: 

𝑦(𝑖 + 1) = 0.3𝑦(𝑖) + 0.6𝑦(𝑖 − 1) + 𝑔[𝑢(𝑖)], (14) 

where the unknown function 𝑔[𝑢(𝑖)] is defined as: 

𝑔(𝑢) = 0.6 sin(𝜋𝑢) + 0.3 sin(3𝜋𝑢) + 0.1 sin(5𝜋𝑢), (15) 

and 𝑢 is defined as: 

𝑢(𝑖) = sin
2𝜋𝑖

200
. (16) 

For this example, we take 1000 data samples, 70% of which 

are used for the training and the remaining 30% for the testing. 

Also, 𝑦(𝑖) and 𝑦(𝑖 − 1) are used to predict the value 𝑦(𝑖 + 2). 
The parameters of CRBENN are set at 𝑘 = 10, 𝛽 = 0.001, 𝛾 =
0.001, 𝛼 = 0.025, 𝜆1 = 0.06, and 𝜆2 = 0.001. The initial 

values are 𝑤(0) = 0, 𝑣(0) = 0, and 𝜎𝑗 (0) = 1. Also, 𝜇𝑗 (0) is 

evenly spaced in [0,1] for all the nodes. All the corresponding 

parameters of the fuzzy-based and RBFNN-based methods are 

set the same as CRBENN for a fair comparison. The number of 

fuzzy sets in each dimension is set to 3 so there are 32=9 fuzzy 

rules. 

 The outputs of CRBENN and the competing methods for 

step 200 to step 1000 are shown in Fig. 2. It can be seen that 

CRBENN has better accuracy than the fuzzy and RBFNN-

based methods. As shown by the absolute testing errors in Fig. 

3, CRBENN has the lowest error. In addition, the MSE is 

presented in Table I, which shows the lowest training and 

testing errors of the proposed method. 

 
Fig. 2. (a) A sinusoidal time-series prediction 

TABLE I 

the Results of Mse for the Proposed Method and the Competing 

Approaches. Bold Numbers Show Better Performance. 

Method 

 

Case 

Fuzzy RBF-based 
Proposed 

(CRBENN) 

train test train test train test 

Example 
1 

0.351 0.1013 0.3029 0.1787 0.2771 0.0686 

Example 

2 
0.0213 0.002 0.009 0.0046 0.0076 8.96e-4 

Example 

3 
2.69 1.244 1.650 1.874 1.462 0.945 

Fig. 2. (b) The zoom view of Fig. 2 (a) 

Fig. 3. The absolute error of the testing of the nonlinear dynamics system 

B. Example 2: Mackey-glass time-series 

One of the standard benchmark models to evaluate the 

performance of prediction algorithms is the Mackey-glass time 

series. The series can be defined as follows: 

𝑑𝑥(𝑡)

𝑑𝑡
=  

𝑎𝑥 (𝑡 −  𝜏)

𝑏 + 𝑥10(𝑡 −  𝜏)
− 𝑐𝑥(𝑡), (17) 

Where a = 0.2, τ = 20, b = 1, and c = 0.1. When τ > 17, 

the equation shows the chaotic behavior. In this experiment, 

τ = 20 and the total number of data points generated is 1000. 

We used 70% of the data for the training and the remaining data 

for testing to validate the identified model. Here, 𝑦(𝑖) and 𝑦(𝑖 −
1) are used to predict the value of 𝑦(𝑖 + 2). The parameters of 

CRBENN are determined by trial and error to achieve the best 
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output for prediction. They are set at 𝑘 = 10, 𝛽 = 0.0015, 

 𝛾 = 0.1, 𝛼 = 0.015, 𝜆1 = 0.02, and 𝜆2 = 0.025. The initial 

conditions are 𝑤(0) = 0, 𝑣(0) = 0, and 𝜎𝑗 (0) = 1. The 

centers 𝜇𝑗 (0) are evenly spaced in [0,1] for all the nodes. The 

fuzzy and RBFNN-based methods are constructed the same 

way with the same similar parameters. The fuzzy sets in each 

dimension are 3, hence there are 32=9 fuzzy rules.   

To demonstrate the prediction performance of CRBENN, the 

outputs of fuzzy test data, RBFNN, and the proposed method 

are compared and shown in Fig. 4. The absolute prediction error 

is also shown in Fig. 5. As can be seen, the proposed method 

has higher accuracy than the fuzzy-based and RBFNN-based 

methods. Moreover, the resulting MSE in Table I shows a 

higher test accuracy for the proposed methods. 

Fig. 4. Prediction of Mackey-Glass time-series 

 
Fig. 5. The absolute error of the testing of the Mackey-Glass time-series 

 

C. Example 3: Lorenz time-series 

The Lorenz time series is generated by solving the 

following equations: 

{
 
 

 
 

𝑑𝓍

𝑑𝑡
= 𝑎(−𝓍(𝑙) + 𝓎(𝑙))

𝑑𝓎

𝑑𝑡
=  𝑏𝓍(𝑙) − 𝑥(𝑙)𝓏(𝑙) − 𝓎(𝑙)

𝑑𝓏

𝑑𝑡
=  −𝑐𝓏(𝑙) + 𝓍(𝑙)𝓎(𝑙)

. (18) 

The parameters are set to the standard values 𝑎 = 10, 𝑏 =
28, and 𝑐 = 8/3. Solutions to this system of three differential 

equations exhibit a sensitive dependence on initial conditions, 

which is the characteristic of chaotic dynamics. The initial 

values are set to 𝓍(1) = 3, 𝓎(1) = 2, and  𝓏(1) = 1.  

The parameters of CRBENN are determined by trial and 

error to optimize the predicted output. Hence, the parameters 

are set at 𝑘 = 10, 𝛽 = 0.001, 𝛾 = 0.0075, 𝛼 = 0.025, 𝜆1 =

0.1, and 𝜆2 = 0.005. The initial values are 𝑤(0) = 0, 𝑣(0) =

0, and 𝜎𝑗 (0) = 1. The centers 𝜇𝑗 (0) are evenly spaced in [0,1] 

for all the nodes. The number of data samples for this prediction 

is 1000. Here, 𝑦(𝑖) and 𝑦(𝑖 − 1) are used to predict the value 

𝑦(𝑖 + 2). The data is split into two parts: 700 points are used 

for training and the remaining 300 for assessing the 

generalization capability of the network. For a fair comparison, 

all the parameters of all methods are chosen the same. There are 

3 fuzzy sets in each dimension with 32=9 fuzzy rules.  

The test data results in Fig. 6 show that CRBENN is more 

accurate than other methods. As shown in Fig. 7, the absolute 

test error of CRBENN is lower than that of competing 

approaches. Due to the many errors in the initial steps of the 

training, for a better comparison, the training errors for 

computing MSE in Table I are calculated from step 200 to step 

700. In addition, based on the data in Table I, CRBENN shows 

the lowest errors in training and testing compared to the other 

methods. This suggests that CRBENN may provide more 

accurate and reliable forecasts when applied to time series 

prediction problems. 

 
Fig. 6. Prediction of the Lorenz time series. 

 
Fig. 7. The absolute error of the testing of Lorenz time-series 

V. CONCLUSION 

With the emergence of the information age and a large 

volume of data, the use of new methods to predict and analyze 

data is more important than before. Time-series forecasting 
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prediction problems. Hence, we use CRBENN for time-series 

prediction. Network weights are updated using the basic 

emotion laws. The RBF parameters in the thalamus are updated 

using the gradient descent algorithm. Then, the proposed 

method is evaluated on the prediction of three time-series 

problems and shows lesser training and testing errors compared 

to the two fuzzy and neuro approaches. However, the number 

of nodes in the network is fixed and must be determined through 

trial and error, which can affect the network's performance. 

Therefore, we hope that appropriate methods such as self-

organizing structures to select the appropriate number of nodes 

for the network will be investigated in future works. 
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