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 

Abstract— Electric Vehicles (EVs) have penetrated the modern 

distribution system in the last decade. On the other hand, 

Renewable Energies (RE) play a serious task in such Micro-Grids 

(MG). A typical MG consists of several Distributed Energy 

Resources (DER) including Distributed Generations (DGs) and 

Demand Response (DR) as well as EV charge/discharge stations. 

In this paper, optimal charging and discharging strategies based 

on DR programs are applied to Electric Vehicle charging stations 

equipped with renewable energies. To avoid profit loss due to 

renewable uncertainties, Peer-to-peer (P2P) energy bartering 

between EV charging stations as prosumers are suggested in this 

paper. Hence the management system for the charge and 

discharge of EVs and station batteries, as well as the Energy 

Management System (EMS) are developed in this paper. To this 

end firstly developed EMS applied to the individual station. 

Secondly, the P2P power transaction was added to the model in 

order to smoothen volatile uncertain load and renewables. The 

proposed model is a Mixed-Integer Linear Programming (MILP) 

and has been solved by GAMS/CPLEX. Numerical studies have 

shown that aggregator deployment is more beneficiary for Virtual 

Power Plant (VPP). 

 

Index Terms— Demand Energy Resources, Renewable Energy, 

Uncertainty, Demand Response, Energy Management System, 

Peer to Peer. 

I.  INTRODUCTION 

        mall - scale  renewable  resources  such  as  Photovoltaics                                                           

        (PVs) and wind have mixed the producers and consumers 

to form new parties named prosumers who can participate 

directly in the energy management of their own. These type of 

consumers may have coordinated to build larger entity to 

increase their benefits that could not be achieved individually 

[1]. In example, although DR is reduces the grid operation 

costs, the incentives may not compensate for the dissatisfaction 

of small prosumers. Besides, the amount of power that can be 

supplied to the energy markets is too large for the single-family 

stations that have RE. According to [2] "simultaneous upwards 

and downwards bid. This means that prosumers need to be able to both 

buy and sell energy at the same time, the minimum bid/offer size, 

simultaneous upwards and downwards bid, and activation time 

are constraints that should be mitigated while these constraints 

disable the prosumers to participate in the market. For this sake, 

the energy market parties are large consumers, retailers, power 

plants, etc.  The second constraint mentioned is "activation 

time." This refers to the time required for prosumers to start 
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buying or selling energy in response to market signals or their 

preferences. 

The volatile energy prices that cause high prices in some 

periods, and the RE technology advances i.e. decreasing capital 

costs are also motivations for the aggregated virtual models. 

These virtual aggregated parties may help decarburization and 

local environmental goals with the delivery of extra energy of 

REs to the main grid instead of power curtailment [2], [3]. The 

virtual models can comply with national-level market 

constraints while local prosumers management [4], [5]. The line 

implies that virtual models—that is, software- or digital-based 

representations of energy systems—can manage local 

prosumers more easily while still adhering to national-level 

market restrictions. Therefore prosumers also can provide an 

opportunity for low carbon policies of the current decade 

paradigm in the energy system, simultaneously reducing the 

peak load of the local grid and contributing to their economic 

development. In this way, the local residential entities will be 

able to optimize their Res as well as EVs and also other electric 

appliances. 

The residential sector contributes a large percentage of 

global electricity demand. Researchers are focusing on 

optimizing Home Energy Management (HEM) due to the 

changing role of consumers in the power system. Customers 

can now actively participate in energy transactions by adjusting 

their consumption patterns and even utilizing their renewable 

energy sources, turning them into prosumers. 

However, some reasons like a sudden need to some 

appliances and frequent tracking of Demand Response 

Programs (DRPs) orders cause a phenomenon named “response 

fatigue” [6]. Hence in long-run, it is expected that some 

consumers may return to a default pattern of consumption. To 

avoid response fatigue, the proposed Energy Management 

(EM) system has considered the dissatisfaction index. 

There are lots of research works that have studied the EM from 

different points of view, considering DR strategies that can be 

summarized as Residential electric appliances [7], Residential 

energy objectives [7], and Uncertainty characteristics of 

Stations [8]. 

In [9], energy scheduling is presented based on incentives. 

The objective is to minimize the energy consumption costs, 

increasing load factor considering consumer satisfaction. 

However, the main disadvantage of [9] is the assumption that 

all equipment has the same properties. In [10] and [11], a smart 

electric equipment operation has been optimized considering 

dynamic tariffs. In [12] and [13], the EM limits the station’s 
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peak load. Pipattanasomporn et al. [12] presented the priority of 

appliance consumption by DR programs and proved that it can 

keep the total power consumption below a predetermined level. 

Note that the [12] does not include the price-based DR (PBDR). 

An optimal appliance scheduling to minimize the monthly 

electricity bill through a PBDR has been explained in [14]. 

The summary of EM and HEM coordination-related research 

studies is illustrated in Table I at the top of the next page. 

In this paper, an EMS model has been developed based on 

[28] for the EV station equipped with renewables and storage, 

and then an aggregator for the EV charge/discharge station is 

established in a way that applies the aggregated EMS model and 

P2P model to reduce the Energy cost of EVs station. numerical 

studies with and without aggregators as well as P2P transactions 

have explained profit increase, especially from a balancing 

market point of view. 

Contributions 

The developed model in this paper accounts for the optimal 

operation of EV stations. The innovations of the paper based on 

literature reviews can be listed as follows: 

- Application of EMS for multi EVs stations system in order 

to guarantee the prosumer benefits in coordinated 

structure. 

- Development of P2P power transactions between EV 

stations for uncertainty and variability management of 

load and renewables.  

The rest of the paper is organized as follows. Section II 

expresses the developed energy management system. The 

coordinated model is given in Section III. P2P power 

transactions between stations are expressed in Section IV. The 

simulation procedure is represented in section V and finally, 

conclusions are given in section VI. 

II. ENERGY MANAGEMENT SYSTEM 

The decision variables are the transferred power from the 

grid to the station, 𝑃𝜔.𝑡
𝐺2𝑆 , the transferred power from the station 

to the grid, 𝑃𝜔.𝑡
𝑆2𝐺 , the charging and discharging powers of the 

EV, 𝑃𝜔.𝑡
𝑆2𝑉 and 𝑃𝜔.𝑡

𝑉2𝑆 the charging and discharging power of the 

station battery, 𝑃𝜔.𝑡
𝑆2𝐵 and 𝑃𝜔.𝑡

𝐵2𝑆, the On/Off state of controllable 

EVs, 𝑥𝑖.𝜔.𝑡
𝐶𝐸𝑉 . 

 

TABLE I 

 HEMS Coordination in Literature 

Decomposition Uncertainty 
Other 

application 

HEMS 

application 
Centralized Decentralized Individual Coordinated Context Ref 

- - - * * * * * 
Coordinated 

HEMS 
[15] 

- - - * - * * * 
Coordinated 

HEMS 
[16] 

- - - * * * * * 
Coordinated 

HEMS 
[17] 

- - hub - * - * * Energy Hub [18] 

- * - * - * - * 
Coordinated 

HEMS 
[19] 

- - P2G * * - - * 

Combined gas 

and electric 

system 

[20-

21] 

- * - * * - - * 
Coordinated 

HEMS 
[22] 

- - P2G * * - - * Power dispatch [23] 

* - OPF - - * - * 
Coordinated 

OPF 

[24-

25] 

* - hub * * * * * Energy hub [26] 

* - - * * * * * 
Coordinated 

HEMS 
[27] 

* * - * * * * * 
Coordinated 

EMS 
paper 

 

∑ 𝑃𝑟𝑜𝑏𝜔

𝜔

∑{𝑃𝜔.𝑡
𝑆2𝐺𝜆𝑡 − 𝑃𝜔.𝑡

𝐺2𝑆𝜆𝑡

𝑇

𝑡=1

− (𝐵𝐴𝐶𝑡.𝜔
𝐵 + 𝐵𝐴𝐶𝑡.𝜔

𝐸𝑉)

+ 𝐼𝑛𝑐𝑡(𝑃𝜔.𝑡
𝐺2𝑆 − 𝑃𝜔.𝑡

𝐺2𝑆.𝑖𝑛𝑖 + 𝑃𝜔.𝑡
𝑆2𝐺)

− 𝑃𝑒𝑛𝑡(𝑃𝜔.𝑡
𝐺2𝑆.𝑖𝑛𝑖 − 𝑃𝜔.𝑡

𝑆2𝐺 + 𝑃𝜔.𝑡
𝑆2𝐺,𝑏𝑒𝑓𝑜𝑟𝑒

)

− 𝑉𝜔.𝑡}                                                                          

 

(1) 

The first two terms represent the income from selling energy 

and the cost of purchasing energy from the grid. The third term 

accounts for battery aging costs due to cyclic operation. 

〖BAC〗_ω^B and 〖BAC〗_ω^EV are battery and EV 

battery costs, respectively, which consider wear from extra 

cycling of batteries. They are calculated using equation (2). 

(2) 
𝐵𝐴𝐶𝑡.𝜔

𝑋

= 𝛼 ∙ (𝑟𝜔.𝑡
𝑐ℎ.𝑋 + 𝑟𝜔.𝑡

𝑑𝑖𝑠.𝑋)       𝑋

∈ {𝐵. 𝐸𝑉} 

     𝐼𝑛𝑐𝑡𝑡(𝑃𝜔.𝑡
𝐺2𝑆,𝑎𝑓𝑡𝑒𝑟

− 𝑃𝜔.𝑡
𝐺2𝑆,𝑏𝑒𝑓𝑜𝑟

+ 𝑃𝜔.𝑡
𝑆2𝐺)  
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represents the incentive income for participation in an 

incentive-based DRP. While,  𝑃𝑒𝑛𝑡(𝑃𝜔.𝑡
𝐺2𝑆.𝐶𝑜𝑛𝑡 − 𝑃𝜔.𝑡

𝑆2𝐺,𝑎𝑓𝑡𝑒𝑟
+

𝑃𝜔.𝑡
𝑆2𝐺,𝑏𝑒𝑓𝑜𝑟

) is the penalty cost resulting from taking part in the 

DRP. 𝑃𝜔.𝑡
𝐺2𝑆,𝑎𝑓𝑡𝑒𝑟

− 𝑃𝜔.𝑡
𝐺2𝑆,𝑏𝑒𝑓𝑜𝑟

 shows the transferred energy to 

the station when a fixed-rate tariff is implemented minus the 

one when an incentive-based DRP is applied. It should be 

mentioned that the term 𝐼𝑛𝑐𝑡𝑡(𝑃𝜔.𝑡
𝑆2𝐺) models the incentive-

based income of customers (EVs in this paper) from injecting 

the power back into the grid. Lastly, 𝑉𝜔.𝑡 shows a function that 

models the dissatisfaction of EV owners as [28] due to variation 

from the initial consumption and is given by (3). 

𝑉𝜔.𝑡 = ∑ 𝑣𝑖
𝐶𝐸𝑉

𝑖

(𝑃𝑖.𝜔.𝑡
𝐶𝐸𝑉 − 𝑃𝑖.𝜔.𝑡

𝐶𝐸𝑉.𝑖𝑛𝑖)

+ 𝑣𝐸𝑉[(𝑃𝜔.𝑡
𝑆2𝑉 − 𝑃𝑖.𝜔.𝑡

𝑖𝑛𝑖.𝑆2𝑉)

+ (𝑃𝑖.𝜔.𝑡
𝑖𝑛𝑖.𝑉2𝑆 − 𝑃𝑖.𝜔.𝑡

𝑉2𝑆 )] 

(3) 

where 𝑣𝑖
𝐶𝐸𝑉 > 0 is defined as the controllable EV load 

inelasticity parameter [29]. The higher amounts of 𝑣𝑖
𝐶𝐸𝑉  

indicate that the operation of the EV at the initial time is the 

most convenient time for the consumer. 

Eq. (4) shows that the demand containing the EVs load and 

the charging requirements of the batteries of Station (i.e., 𝑃𝜔.𝑡
𝑆2𝐵 

) is either supplied through the grid (𝑃𝜔.𝑡
𝐺2𝑆) or by the internal 

generation of wind and PV, or by the energy from the battery 

or the EV. 

(4) 
𝑃𝜔.𝑡

𝐺2𝑆 + 𝑃𝜔.𝑡
𝑤𝑖𝑛𝑑2𝑆 + 𝑃𝜔.𝑡

𝑃𝑉2𝑆 + 𝑌𝜔.𝑡
𝐵 𝑃𝜔.𝑡

𝐵2𝑆 +

∑ 𝑌𝑖,𝜔.𝑡
𝐸𝑉 𝑃𝜔.𝑡

𝑉2𝑆𝑁𝐸𝑉
𝑖=1  = ∑ 𝑍𝑖,𝜔.𝑡

𝐸𝑉 𝑃𝜔.𝑡
𝑆2𝑉𝑁𝐸𝑉

𝑖=1 + 𝑍𝜔.𝑡
𝐵 𝑃𝜔.𝑡

𝑆2𝐵   

     𝑌𝜔.𝑡
𝐵  and 𝑍𝜔.𝑡

𝐵  show binary variables to guarantee that a 

Station battery cannot be charged and discharged 

simultaneously. Similarly, binary variables 𝑌𝑖,𝜔.𝑡
𝐸𝑉 and 𝑍𝑖,𝜔.𝑡

𝐸𝑉  

guarantee that each EV (i.e. ith EV) battery cannot be charged 

and discharged concurrently as presented in (5). 

(5) 
𝑌𝑖,𝜔.𝑡

𝑋 + 𝑍𝑖,𝜔.𝑡
𝑋 ≤ 1  

          ∀𝑡. ∀𝜔, 𝑥 ∈ {𝐵 . 𝐸𝑉} 

The total consumption of controllable EVs determines the 

controllable part of Station demand (as in (6)). Each 

controllable EV consumes its nominal power, and the EM 

controls each EV by determining its ON/OFF states, 

x_(i.ω.t)^CEV. The operation of EVs is also influenced by 

scenarios, covering the uncertainty of renewable energies and 

operating the Station battery. 

(6) 
𝑃𝜔.𝑡

𝐼

𝐶 = ∑ {𝑥𝑖.𝜔.𝑡
𝐶𝐸𝑉 (𝑌𝜔.𝑡

𝐸𝑉 − 𝑍𝜔.𝑡
𝐸𝑉 )𝑃𝑖

𝑁𝑜𝑚}𝑖      ∀𝑡. ∀𝜔 

£ − 𝐸𝑄(1)𝜔 ≤ 𝑆𝑊𝜔 

Inequality (7) limits the daily consumption of each 

controllable EV to the required amount. This constraint cannot 

exceed 24 hours since EVs need to operate multiple times a day. 

In addition to the dissatisfaction function V_t, which models 

consumers' preference for maintaining their initial consumption

pattern, an operation time ensures that each controllable EV is 

charged within a suitable period for the occupants. 

(7) 
𝑃𝑖

𝐶𝑟𝑖𝑡 ≤ ∑ {𝑃𝑖.𝜔.𝑡
𝐶𝐸𝑉}𝑡                  

𝑡 ∈ 𝑇𝑖
𝐶𝐸𝑉 , ∀𝑖 . ∀𝜔 

     The EMS must not switch off some EVs when they are 

working. This means that the EMS system respects the 

operation period of each EV. On this basis, (8) to (9) are 

considered to assure that all controllable EVs are ceaselessly 

used in their inhabitant operation period. 

𝑌𝑖,𝜔.𝑡
𝐸𝑉 + ∑ 𝑍𝑖,𝜔.𝑡+𝑗

𝐸𝑉 ≤ 1
𝑊𝐶𝑖−1
𝑗=1         ∀𝑡. ∀𝑖. ∀𝜔   (8) 

𝑍𝑖,𝜔.𝑡
𝐸𝑉 − 𝑌𝑖,𝜔.𝑡

𝐸𝑉 = 𝑥𝑖.𝜔.𝑡
𝐶𝐸𝑉 − 𝑥𝑖.𝜔.𝑡−1

𝐶𝐸𝑉    ∀𝑡. ∀𝑖. ∀𝜔   (9) 

Eq. (10) describes the model considered to evaluate the SOC 

variations for the station and EV batteries. 

𝑆𝑂𝐶𝜔.𝑡
𝑋 = 𝑆𝑂𝐶𝜔.𝑡−1

𝑋 +  

𝑍𝜔.𝑡
𝑋 𝜂𝑐ℎ.𝑋 (

𝑃𝜔.𝑡
𝑆2𝑋

𝐶𝑎𝑝𝑋
) − 𝑌𝜔.𝑡

𝑋             𝑋 ∈ {𝐵. 𝐸𝑉} 
(10) 

𝑆𝑂𝐶𝑚𝑖𝑛 .𝑋 ≤ 𝑆𝑂𝐶𝜔.𝑡
𝑋 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥.𝑋 

                                                          𝑋 ∈ {𝐵. 𝐸𝑉} 
(11) 

𝑟𝜔.𝑡
𝑐ℎ.𝑋 =

𝑆𝑂𝐶𝜔.𝑡
𝑋 −𝑆𝑂𝐶𝜔.𝑡−1

𝑋

𝜂𝑐ℎ.𝑋           ∀𝑡. ∀𝜔, 𝑋 ∈ {𝐵. 𝐸𝑉} (12) 

𝑟𝜔.𝑡
𝑑𝑖𝑠.𝑋 = (𝑆𝑂𝐶𝜔.𝑡−1

𝑋 − 𝑆𝑂𝐶𝜔.𝑡
𝑋 )          𝑋 ∈ {𝐵. 𝐸𝑉} (13) 

0 ≤ 𝑟𝜔.𝑡
𝑐ℎ.𝑋 ≤ 𝑟𝑐ℎ.𝑚𝑎𝑥.𝑋           ∀𝑡. ∀𝜔, 𝑋 ∈ {𝐵. 𝐸𝑉} (14) 

0 ≤ 𝑟𝜔.𝑡
𝑑𝑖𝑠.𝑋 ≤ 𝑟𝑑𝑖𝑠.𝑚𝑎𝑥.𝑋         ∀𝑡. ∀𝜔, 𝑋 ∈ {𝐵. 𝐸𝑉} (15) 

    Based on (10), the battery's SOC at time t depends on the 

SOC at time t-1, injected energy to the battery, and injected 

energy back to the grid and station at time t. Inequality (11) 

limits the depth of discharge to prevent overcharging. The 

charging and discharging rates for Station and EV batteries are 

limited as shown in (12) to (15). Power transferred to the grid 

is determined by surplus wind and PV generation, along with 

battery injection, as in (16).  

𝑃𝜔.𝑡
𝑆2𝐺 = 𝑃𝜔.𝑡

𝑤𝑖𝑛𝑑 − 𝑃𝜔.𝑡
𝑤𝑖𝑛𝑑2𝑆 + 𝑃𝜔.𝑡 

𝑃𝑉 − 𝑃𝜔.𝑡 
𝑃𝑉2𝑆 +

               𝑃𝜔.𝑡
𝐵2𝑆 + ∑ 𝑌𝑖,𝜔.𝑡

𝐸𝑉 𝑃𝜔.𝑡
𝑉2𝑆𝑁𝐸𝑉

𝑖=1   
         ∀𝑡. ∀𝜔                                                

(16) 

𝑌𝜔.𝑡
S 𝑃𝜔.𝑡

𝐺2𝑆 + Z𝜔.𝑡
S 𝑃𝜔.𝑡

𝑆2𝐺 ≤ 𝑃𝐶.𝑚𝑎𝑥        ∀𝑡. ∀𝜔   

 
(17) 

Y𝜔.𝑡
𝑆 + Z𝜔.𝑡

𝑆 = 1                                     ∀𝑡. ∀𝜔 (18) 

limits the power transaction between the grid and the station. 

Also, equation (18) describes that the station may choose one 

direction for power transmission. 
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Also to model the uncertainty effect on the problem, the well-

known risk index of Conditional Value at Risk (CVaR) has been 

added to the problem. 

𝑂𝐹 = (1 − 𝛽) × 𝐸𝑄(1) + 𝐶𝑉𝑎𝑅    (19) 

𝐶𝑉𝑎𝑅 = 𝛽 × (£ −
1

1 − 𝛼
∑ 𝜋𝜔 × 𝑆𝑊𝜔

𝜔

) (20) 

     In which 𝛼 and 𝛽 are confidence level and risk importance 

level. Also £ and 𝑆𝑊𝜔 are decision variables of CVaR and are 

as follows: 

£ −𝐸𝑄(1)𝜔 ≤ 𝑆𝑊𝜔      (21) 

𝑆𝑊𝜔 ≥ 0   (22) 

III. COORDINATED EM 

     The proposed EM model in the previous section can be 

aggregated by an aggregator in order to apply the proposed EM 

to multiple prosumers. To this end, the profit of each prosumer 

should be guaranteed in a coordinated model due to the 

uncertainty of renewable generation and the load of each 

prosumer, it seems that the coordinated EM for multiple stations 

may increase the profit of each station. The schematic of the 

coordinated model for EM is depicted in Fig. 1. 

Two major matters of aggregation are as follows: 

-Point 1: reduction of EVs station (as prosumer) bill in 

coordinated model toward individual EM for each of them. 

- Point 2: If the summation of electric energy supply for 

multiple stations, is set as an objective function of the 

coordinated model, some of the stations probably experience 

a cost increase and some may face a decrement. To avoid this 

challenge, minimum profit insurance as much as the profit of 

individual EM system applications should be modeled as a 

constraint.  

Hence the coordinated (aggregated) model is developed as: 

 

     

F1 F2 Fn

...

Coordination Constrained to 

improved Fi

EMS for

Station 1

EMS for

Station 2

EMS for

Station n

 
Fig. 1. coordinated EM model for Prosumers 

 

 

(23) 𝑀𝑖𝑛: ∑ 𝑂𝐹(𝑆)𝑁𝑆
𝐻=1   

𝑆. 𝑡: 

(24) 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑆) 

(25) 𝑂𝐹(𝑆) ≤ 𝑂𝐹𝑚𝑖𝑛(𝑆) 

where 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑆) are (2)-(22) for each station. And 

𝑂𝐹𝑚𝑎𝑥(𝑆) is the optimal cost of each station in the individual 

EM application. Note that the added value of profit due to 

aggregation is dedicated to the aggregator. Hence the basic 

concept of aggregation is verified. 

IV. P2P POWER TRADING BETWEEN STATIONS 

     The main problem in this paper is to enhance EMS using P2P 

facilities. In this section, P2P energy transactions between 

stations are added to the EMS. To this end, the proposed method 

in [21] is used to model the power traded between stations. 

Hence from each station's point of view, other stations are as a  

black box. 

𝑃𝑗.𝑘.𝑡
𝑆𝑜𝑢𝑡 = ∑ 𝑃𝑙.𝑡

𝑜𝑢𝑡

𝑁𝑆

𝑙=1.𝑙≠𝑗

∀𝑗. 𝑡. 𝑘 (26) 

𝑃𝑗.𝑘.𝑡
𝑆𝑖𝑛 = ∑ 𝑃𝑙.𝑡

𝑖𝑛

𝑁𝑆

𝑙=1.𝑙≠𝑗

∀𝑗. 𝑡. 𝑘 (27) 

𝑃𝑗.𝑡
𝑆𝑖𝑛 = 𝑃𝑗.𝑡

𝑜𝑢𝑡  (28) 

𝑃𝑗.𝑡
𝑆𝑜𝑢𝑡 = 𝑃𝑗.𝑡

𝑖𝑛  (29) 

     (27) and (29) determine the summation of output and input 

power of stations other than jth one. Also (30) explains that the 

sum of stations other than jth one input/output power is equal to 

the corresponding station (jth one) output/input. Simply power 

balance equation for each station Eq (6) after the application of 

P2P transactions between MGs would be as follows: 

𝑃𝜔.𝑡
𝐺2𝑆 + 𝑃𝜔.𝑡

𝑤𝑖𝑛𝑑2𝑆 + 𝑃𝜔.𝑡
𝑃𝑉2𝑆 + 𝑌𝜔.𝑡

𝐵 𝑃𝜔.𝑡
𝐵2𝑆

+ ∑ 𝑌𝑖.𝜔.𝑡
𝐸𝑉 𝑃𝜔.𝑡

𝑉2𝑆

𝑁𝐸𝑉

𝑖=1

+ 𝑃𝑆.𝜔.𝑡
𝑖𝑛

= ∑ 𝑍𝑖,𝜔.𝑡
𝐸𝑉 𝑃𝜔.𝑡

𝑆2𝑉

𝑁𝐸𝑉

𝑖=1

+ 𝑍𝜔.𝑡
𝐵 𝑃𝜔.𝑡

𝑆2𝐵

+ 𝑃𝑆.𝜔.𝑡
𝑜𝑢𝑡  

(30) 

V. NUMERICAL STUDIES AND DISCUSSION 

A Station in Italy is considered to investigate the proposed 

model. All data for the case study is available in [30,31]. Two 

types of EVs have been considered as controllable EVs. The 

first group can wait for just three hours in the morning and four 

hours in the evening. While second group can wait for two 

hours and their departure time is floating in a day. 

A. Case-1 

The first case study is risk analysis for 10 scenario numbers 

and then coordination of EMS considering P2P power 

transactions has been studied. 

- Risk Analysis 

     Firstly, to validate the model and GAMS codes the objective 

function has been depicted for different values of β in Fig. 2. 
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Fig. 2.  Expected objective VS β 

 
(a): First group of controllable EVs 

 
(b): Second group of controllable EVs 

Fig. 3. Dissatisfaction time due to change in EV consumption pattern 

Fig. 3 shows the waiting time for using the station due to 

participation in the load response program. Fig. 3-a. shows this 

variable for the first group of controllable EVs and Fig. 3-b. 

shows this variable for the second group of controllable EVs. 

For critical EVs, this variable is zero. Although the amount of 

penalty or inelasticity of critical EV loads is less than the 

controllable EVs, its working hours are limited and specific, 

and therefore, in the calculation of the cost of dissatisfaction in 

the objective function, the difference in the amount of power 

consumed by the critical EV loads in case of interruption will 

be large in the hours of need because its compensation is 

meaningless in other hours. 

Another point in Fig. 3. is that the amount of dissatisfaction 

for the first EV group only exists in three hours of the day for 

some scenarios, but this amount of dissatisfaction is 100%. For 

the second group of controllable EVs, this lack of satisfaction 

was present at all hours for all scenarios, but its value is less 

than 10%. The reason is that, first of all, there are only two 

usage periods for the first EV group during the 24 hours of the 

day and night (7-9 and 18-22), so it is not possible to use at all 

outside these periods, and therefore it is possible to become 

non-zero. Secondly, the change in the common desired pattern 

for the first group of controllable EVs can be applied for 1 full 

hour, and therefore the change of its pattern is made as a change 

of 1 full hour at the desired consumption time. However, the 

values associated with the second group of modifiable EVs are 

not binary and can take any value between 0 and 1. This is 

because it is possible to change it minutely. The last point is that 

there is no difference between the scenarios for the second 

group of controllable EVs, except for two hours 1 and 5, which 

shows the independence of the performance of this system from 

the change in scenarios of uncertain parameters. 

- coordination of EMS considering P2P transactions 

The coordinated model verification has been done through 

the application of coordinated EM to two cases, a first case 

containing three stations as an example and the large-scale 

system as the main case study. 

Case-1: three station example 

In this example case, the comparison between the station's 

profit increments is illustrated in Table II. 

TABLE II 

 Profit Enhancement in a Coordinated Model 

station 
Individual 

EM 

Aggregated 

EM 

Profit 

enhancement 

1 2.444 2.445 0.199 

2 2.692 2.716 0.024 

3 2.747 2.784 0.037 

total 7.883 7.945 0.26 
 

From Table II it can be concluded that the coordination 

through aggregation by adding P2P transactions makes the 

EMS more profitable for consumers. Hence the EV stations' 

tendency to take part in DR programs can be increased, either 

do EV owners. 

B. Case-2 

In this case, three scenarios have been done on a large-scale 

system with the base of the previous case with some 

modifications and extension to 30 EV stations. The total wind 

and solar generation of stations are illustrated in Fig. 4. The 

studied scenarios are as follows: 

-Scenario 1: without EMS 

-Scenario 2: with individual EMS 

-Scenario 3: Coordinated EMS      
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Fig. 4. Wind and Solar generation 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Load profile of three scenarios for 30 stations in three 
scenarios, (a): First scenario, (b): Second scenario, (c): Third 

scenario 

 

The results of numerical studies consist of load profile, and 

individual cost savings due to participation in EMS in scenarios 

2 and 3. Fig. 5. depicts the load profile of three scenarios for 30 

stations in three scenarios. Note that the total EV load is about 

3.7 MWh while the total renewable generation of stations is 

about 0.55 MWh, but there is a good correlation between them. 

This may cause the P2P trading more profitable without any 

load dissatisfaction due to load shift. 

As can be seen from Fig. 5., in the second scenario the load 

is adapted to the electric price bought by stations with 

manipulated tariffs and EMS application in comparison to 

scenario 1, while in the third scenario because of P2P power 

trading more flexibility is achieved by stations despite the equal 

price manipulation in comparison to the second scenario. It is 

noticeable that although there is little difference between the 

charging load of scenarios 3 and 2 (see Fig. 6) the following 

valuable effect of this much difference will be shown. 

 
Fig. 6. Difference of EV loads between scenarios 3 and 2 

 

Fig. 7. gives the comparison of the incomes of stations in 

three scenarios. It can be concluded that the coordinated model 

is more profitable for entities as well as operators of the grid as 

it can alter the load more than individual EMS applications. The 

total profit for the three scenarios is 6216, 6523, and 7199 $. 

 
Fig. 7. The comparison between the income of stations in three 

scenarios ($) 

VI. CONCLUSION 

In this paper besides presenting the basic model of the 

energy management system according to the existing article, 

cost risk modeling by CVaR, proposed coordination method 

modeling, solution methods, and tools were proposed. Next, 

numerical studies for various states of the model that was 

presented were carried out. These included the basic study for 

verification, increased risk, the coordination of the energy 

management system for multiple EV stations, and the study of 

how coordination affected the cost of subscribers in separate 

solutions. The most significant outcomes of the paper are as 

follows: 
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• The reason that coordination leads to the reduction of the 

total energy supply cost is to cover the unevenness and 

uncertainties of the load curve and the production of renewable 

resources. For example, the intensity of load changes in the 

distribution network is greater than in the transmission 

networks, while the load of the transmission network is the sum 

of these highly variable loads, but this aggregation leads to a 

smoother load curve. 

• A coordinated model will be attractive for all stations to 

participate due to the lower total cost for the station. If the total 

cost increases with the coordinated application of the energy 

management system, it would not be possible to implement this 

energy management system. 

     It is suggested to consider V2G in EMS for more profit for 

stations and lower charging prices for EVs.  

Nomenclature 

𝑎𝑓𝑡𝑒𝑟 After the DR application. 

𝐵 Battery. 

𝐵𝐴𝐶 Battery Aging Cost. 

𝑏𝑒𝑓𝑜𝑟𝑒 Before DR application. 

𝐵2𝐺 Battery to grid. 

𝐵2𝑆 Battery to station. 

CEV Controllable EV 

𝑐ℎ Charge. 

Cont Contracted 

𝐶𝑟𝑖𝑡 Critical demand for EVs at the station. 

𝑑𝑖𝑠 Discharge. 

𝐸𝑉 Electric vehicle. 

𝐺2𝑆 Grid to station. 

G2V Grid to vehicle. 
𝐼

𝐶
 

Interruptible curtailable EVs. 

𝑁𝑜𝑚 Nominal power of controllable EVs. 

𝑃𝑉 Photovoltaic. 

𝑅𝑒𝑞 Requisite power of controllable EVs. 

𝑆 Station. 

𝑆2𝐵 Station to batteries. 

𝑆2𝐺 Station to grid. 

𝑆2𝑉 Station to vehicle. 

𝑉2𝐺 Vehicle to the grid. 

𝑉2𝑆 Vehicle to the Station. 

indices 
𝑖 Controllable EVs. 

𝑡 Time. 

𝜔  Scenarios. 

Variables and parameters 
𝐶𝑎𝑝 Battery capacity. 

CW The critical working period of the I/C. 

𝐼𝑛𝑐 Incentive paid for demand curtailment. 

N  

𝑃 Power. 

𝑃𝑒𝑛 Penalty applied to demand who refuse DR 

adjustment. 

𝑃𝑟𝑜𝑏  Probability of scenario. 

𝑟 Charging/discharging rates of battery. 

𝑆𝑂𝐶 State of charge. 

𝑣  Inelasticity of demand. 

𝑉 Dissatisfaction of EV consumers. 

𝑊𝐶 Working Cycle of EVs. 

𝑥 Binary variable for controllable EVs. 

𝑌, 𝑍  Binary variables for direct transferred energy. 

𝛼  Aging coefficient of battery duo to cyclic charge 

and discharge. 

η Battery efficiency for charge and discharge. 

λ Tariffs. 
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