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Abstract-Restricted Earth Fault (REF) Relay, a type of 

differential protection, is responsible for detecting single-phase-to-

ground faults at the terminal of a transformer or faults in the 

winding to the core. This protection scheme is inherently sensitive 

and rapid; however, due to current transformer saturation during 

external fault conditions with high currents and the transient 

magnetizing current flowing through the transformer core, it may 

be susceptible to false operation. In this paper, an intelligent 

restricted ground fault protection scheme based on wavelet 

transform (WT) is presented. In the initial step, the differential 

current resulting from the simulation is analyzed using WT, and 

various features of decomposed signals are extracted as sample 

patterns for training intelligent classifiers. The performance of the 

proposed method is evaluated using data obtained from the 

simulation of a 230/63.5 kV power transformer in the 

PSCAD/EMTDC software environment. Additionally, to 

accurately simulate the transformer current during saturation, 

the valid Gill's model is employed. The results of implementing 

this intelligent protection scheme confirm its high reliability 

against false operation. 
 

 
Index Terms-- Artificial Intelligence, Current Transformer 

Saturation, Internal and External Fault, Restricted Earth Fault 

Protection, Power Transformer, Wavelet Conversion. 

 
Nomenclature 

REF Restricted Earth Fault 
WT Wavelet Transform  
PNN Probabilistic Neural Networks 
SVM Support Vector Machines  
STFT Short Term Fourier Transforms  

𝑝𝑟(𝑆𝑖|𝑥) Probability Density Function 
𝑆1, 𝑆2, … . , 𝑆𝑘 Corresponding Classes 

k Number of Possible Classes 
𝑥𝑗

𝑖 Example j From Class i 

C Penalty Coefficient 
𝜎𝑖 Smoothing Factor 

𝛼𝑖 and 𝜂𝑖 Lagrange Multiplier Auxiliary Variables. 

I.  INTRODUCTION 

Due to the critical role of transformers in power systems, 

the use of protective equipment with high-speed and 

precise detection capabilities is a requirement that must always 

be considered.  
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A.  motivation, contribution 

Ground faults at the terminals or windings of transformers, 

including internal faults, can lead to catastrophic consequences 

such as fires or transformer explosions if proper and timely 

protection measures are not in place [1]. At present, one of the 

most common methods of protecting power transformers 

against internal faults is differential protection [2]. Although 

biased differential protection units provide effective protection 

against phase-to-phase and phase-to-ground internal faults, 

they exhibit limited sensitivity to internal ground faults 

occurring in the vicinity of the neutral-grounded windings [3]. 

Furthermore, in certain operating conditions such as 

transformer energization and current transformer saturation, 

spurious differential currents can be generated, leading to 

incorrect operation of the differential relay[4]. According to [5], 

differential relays are susceptible to maloperation during 

transformer energization without load because the inrush 

currents are mistakenly interpreted as internal faults.  

B.  literature review 

Consequently, a number of strategies, such as maintenance 

and harmonic blocking techniques, have been put forth to 

improve the performance of differential relays [6, 7]. 

Furthermore, the fault current magnitude is %X of the 

maximum fault current (which occurs at the terminals) when a 

single-phase-to-ground fault happens at a distance of %X from 

the neutral point in the star-winding. The phase differential 

relay can only protect %37.96 of the transformer's winding 

against ground faults if the differential relay's pickup setting is 

set at %20 of the rated current, leaving %62.04 of the winding 

exposed [8]. Therefore, due to insufficient sensitivity in 

detecting internal ground faults occurring near the transformer's 

neutral point, REF protection is used as a supplementary 

protection to the differential relay [9, 10]. The REF protection 

is divided into two categories: high impedance and low 

impedance [11]. One of the ongoing challenges in REF 

protection is preventing false operation of such relays during 

current transformer saturation caused by transformer inrush 

currents and external faults [12, 13]. Although precise 

measurement of transformer current can improve the 

performance of REF protection, it may not eliminate the effects 

of current transformer saturation [14]. 
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One of the methods to prevent incorrect operation of this 

scheme due to current transformer saturation is the use of high-

impedance REF protection [15]. In this type of protection 

scheme, a high-value impedance is connected in series in the 

differential branch to prevent false relay operation during 

severe external faults. In other words, this scheme is resistant to 

current transformer saturation and does not lead to incorrect 

relay operation. However, one of the reasons why this type of 

scheme is rarely used today is the presence of essential 

requirements that must be considered for its implementation, 

including: 

• Equality of current transformer turns ratios in phases and 

the neutral point of the transformer. 

• Identical magnetic characteristics for all current 

transformers. 

• Equality of knee-point voltage [16]. 

Considering the factors mentioned above, coupled with 

advancements in microprocessor technology, low-impedance 

REF protection has gained significant popularity compared to 

high-impedance REF due to its fewer constraints. This type of 

protection scheme does not have the limitations associated with 

high-impedance REF. However, the impact of current 

transformer saturation still affects the accuracy of this relay [1]. 

Various methods, including adaptive restraint current [17] and 

direct supervision methods [18] have been proposed to prevent 

false operation of low-impedance REF protection. 

Nevertheless, the possibility of false operation still exists under 

certain specific operating conditions [19, 20]. In [19] presents a 

combined method based on both low-impedance and high-

impedance REF protection to mitigate false operation. 

However, this protection scheme may not be effective against 

inrush currents and external faults with high neutral currents. In 

[21, 22], a time-domain-based digital phase comparator method 

has been proposed to improve the performance of the low-

impedance REF protection scheme. However, this method only 

assesses inrush currents and single-phase-to-ground faults in 

this protection scheme. Authors in [23] have introduced an 

intelligent algorithm based on waveform recognition using 

pattern detection. Nevertheless, due to its high computational 

load, this approach results in relatively slower detection and trip 

command transmission. In [24] presents another intelligent 

algorithm with a smaller training vector, based on certain 

parameters derived from conventional methods. In [25], a time-

frequency analysis-based method is proposed using direct 

supervision. In this approach, distinctive features for detecting 

internal ground faults are extracted by employing the S-

transform. By determining suitable threshold values for these 

features, a relatively efficient algorithm is suggested. It is worth 

noting that the complexities and computational burdens of these 

methods may pose challenges in practical implementation. A 

list of main novelties and contributions of this work can be 

listed as follows: 

 For the first time, the SVM and Wavelet Transform 

are used to design a new supervision method for the 

REF relay. 

 Artificial intelligence has been used to design the 

REF protection, which increases the reliability of 

the REF protection and reduces the amount of time 

delay of the operation. 

 In this method, all types of external and internal 

faults are considered to provide classifier training 

models, which makes the proposed method 

comprehensive in dealing with all types of faults. 

 The time delay imposed by the new method is 

acceptable. 

C.  paper organization 

Therefore, in this paper, an intelligent REF protection scheme 

based on WT is presented. In the first stage, suitable features 

are extracted based on the analysis of the differential current 

signal using WT. Subsequently, in the second stage, the 

extracted features are separated from each other by intelligent 

classifiers. This allows for the detection of internal faults from 

magnetizing inrush currents and external faults. To achieve this 

goal, the tools used are briefly introduced in Section 2. Section 

3 provides a detailed description of the proposed method. The 

results of implementing the new method and comparative 

evaluations are presented in Section 4. Finally, the paper 

concludes with a summary in Section 5. 

II.  THE EMPLOYED TOOLS INCLUDE 

As mentioned in the introduction, to prevent the false 

operation of the REF protection scheme, an intelligent 

protection algorithm based on WT is proposed. In this scheme, 

the differential currents obtained from simulations under 

various operating conditions are analyzed using WT, and the 

resulting features from this transformation are employed as 

training patterns for intelligent classifiers. In this paper, for the 

intelligentization of REF protection, PNN and SVM classifiers 

are used. Therefore, in this section, a brief introduction to PNNs 

and SVMs, as well as WT, is provided. Subsequently, the 

preparation and utilization of these tools for the implementation 

of the proposed algorithm are detailed. 

A.  Probabilistic neural network (PNN) 

PNNs are a type of feedforward neural network primarily 

designed for estimating the probability density function using 

Parzen window estimation and the Bayes classification 

theorem. These networks are introduced for classification tasks 

and fall into the category of supervised learning. PNNs can 

efficiently handle pattern recognition tasks with relatively 

lower computational time compared to other neural network 

architectures. The network is constructed by determining 

weight vectors for each distinct pattern unit in the set of sample 

patterns from a specific class. Then, the outputs of pattern units 

are connected to the corresponding summation unit of that 

class. 

To avoid the lengthy training process that poses challenges 

in most neural networks, PNNs have been employed as the core 

classifier for detecting inrush currents and severe external faults 

from internal faults in power transformers. The structure of 

PNNs is illustrated in Fig. 1, depicting a four-layer feedforward 

network with an optimized structure. In PNNs, Gaussian 

functions are commonly used due to their favorable behaviour 
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and simpler computations. Suppose 𝑥 ∈ 𝑅𝑑  represents d-

dimensional pattern vectors. The posterior probability 

𝑝𝑟(𝑆𝑖|𝑥) of belonging to class 𝑆𝑖  is expressed using the Bayes 

theorem as follows: 

𝑝𝑟(𝑆𝑖|𝑥) =
𝑝𝑟(𝑥|𝑆𝑖)𝑝𝑟(𝑆𝑖)

𝑝(𝑥)
 (1) 

where 𝑝𝑟(𝑆𝑖|𝑥), 𝑖 = 1 … . 𝑘, represents the probability 

density function of this pattern in the classes that need to be 

separated, 𝑖 = 1. . . . 𝑘, and 𝑝𝑟(𝑆𝑖) is the probability of 

occurrence of classes. 𝑝(𝑥) is assumed to be a constant value. 

The decision rule for class 𝑆𝑖  is to maximize the value of 

𝑝𝑟(𝑆𝑖|𝑥). This will happen when for all 𝑗 ≠ 𝑖, the following 

condition holds: 

𝑝(𝑥|𝑆𝑖)𝑝𝑟(𝑆𝑖) > 𝑝(𝑥|𝑆𝑗)𝑃𝑟(𝑆𝑗) (2) 

This ensures that the pattern is classified into the class 

𝑆𝑖   where its posterior probability is maximized compared to 

other classes. 

It is assumed that the probabilities 𝑃𝑟(𝑆𝑖) are specified for 

different classes, and the probability density function is 

Gaussian. The estimation of the probability density function 

will be as follows: 

𝑝(𝑥|𝑆𝑖) =
1

(2𝜋)𝑑 2⁄ 𝜎𝑖
𝑑|𝑆𝑖|

 

∑ 𝑒𝑥𝑝 [
−(𝑥 − 𝑥𝑗

𝑖)𝑇(𝑥 − 𝑥𝑗
𝑖)

2𝜎𝑖
2 ]

𝑛𝑖

𝑗=1

 

(3) 

Where 𝑥𝑗
𝑖 represents example j from class i, |𝑆𝑖| = 𝑛, and 𝜎𝑖 

is a smoothing factor. The input vector has d values, as the input 

vector 𝑥 ∈ 𝑅𝑑 is of dimension d. The first hidden layer encodes 

the training patterns. Therefore, each such pattern unit for class 

i will be obtained as an expression similar to what is shown in 

(3).  

B.  Support Vector Machines (SVMs) 

SVMs have been widely used in recent years for various 

classification problems [26]. This classifier finds a hyperplane 

to separate the input data based on their corresponding classes, 

maximizing the margin between classes [27]. For further 

explanation, if {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁  is considered as the training set 

consisting of N data points, including two classes, where 𝑥𝑖  is 

the i-th value of an N-dimensional input vector, and 

𝑦𝑖  represents the class labels (-1 and +1), the equation 𝑊𝑇𝑥𝑖 +
𝑏 = 0 is considered as a hyperplane capable of separating the 

data according to their classes. In this equation, the weight 

vector and bias are denoted as w and b, respectively. The goal 

of this classifier is to find values for the weight vector and bias 

that maximize the separation between classes. For this purpose, 

the concept of the separation margin, as defined in (4), is 

introduced [28]: 

𝑚 = ‖
2

𝑤
‖ (4) 

To increase the separation power of SVMs, the value of m 

should be maximized according to the above expression. 

Therefore, the value of ‖𝑤‖ should be minimized. Finally, for 

linearly separable data, the SVM minimizes the function 

𝑣(𝑤) presented in (5), along with satisfying the constraint in 

(6). 

𝑣(𝑤) =
1

2
𝑤𝑇𝑤 (5) 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 i=1,2,….,m (6) 

It's worth noting that most classification problems are not 

linearly separable. For solving non-linear problems, a type of 

non-linear SVM has been introduced, where the training data is 

mapped to a higher-dimensional space. To achieve this, a non-

linear transformation ∅(𝑥) is used for mapping. Therefore, the 

required function and constraints for realizing the non-linear 

SVM, like (7) and (8), are taken into account. 

𝑣(𝑤, 𝜀) =
1

2

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜀𝑖

𝑁

𝑖=1

 (7) 

𝑦𝑖(𝑤𝑇∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜀𝑖 i=1,2,…,N (8) 

In the above equations, 𝜀𝑖  are auxiliary variables with values 

greater than or equal to zero, used to account for the obtained 

error. The quantity C is called the penalty coefficient, and its 

value is always greater than zero. Furthermore, the vectors that 

satisfy the mentioned constraints are called support vectors. 

These vectors are the ones that only depend on the decision 

boundary or separating hyperplane. The mentioned equation 

can be written using the Lagrange principle as (9), and it should 

also satisfy the conditions presented in (10). 
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Fig. 1. Structure of PNN  
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𝐿(𝑤, 𝑏, 𝜀, 𝛼, 𝜂) =
1

2
‖𝑤‖2 + 𝐶 (∑ 𝜀𝑖

𝑁

𝑖=1

)

− ∑ 𝛼𝑖(𝑦𝑖(𝑤𝑇𝜑(𝑥) + 𝑏) − 1
𝑁

𝑖=1

+ 𝜀𝑖) − ∑ 𝜂𝑖𝜀𝑖

𝑁

𝑖=1

 

(9) 

𝜕𝐿

𝜕𝑏
= ∑ 𝛼𝑖𝑦𝑖 = 0

𝑁

𝑖=1

 

𝜕𝐿

𝜕𝑏
= 𝑤 − ∑ 𝛼𝑖

𝑁

𝑖=1

𝑦𝑖∅(𝑥𝑖) = 0 

𝜕𝐿

𝜕𝜀𝑖

= 𝐶 − 𝛼𝑖 − 𝜂𝑖 = 0 

(10) 

 

In the above equations, 𝛼𝑖 ≥ 0 and 𝜂𝑖 ≥ 0 are Lagrange 

multiplier auxiliary variables. By applying these conditions, the 

optimization problem is formulated as (11), and the constraints 

for this problem are also seen in (12). 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 {∑ 𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖

𝑁

𝑗=1

𝛼𝑗𝑦𝑖

𝑁

𝑖=1

𝑦𝑗 (∅(𝑥𝑖)𝜑(𝑥𝑗))} 

(11) 

0 < 𝛼𝑖 < 𝐶 

∑ 𝛼𝑖𝑦𝑖 = 0

𝑁

𝑖=1

 
(12) 

 

The 𝑥𝑖 for which 𝛼𝑖 > 0 are chosen as support vectors. After 

that, the separating hyperplane is determined from (13). 

∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖 , 𝑥) + 𝑏 = 0

𝑆𝑉

 (13) 

Finally, the nonlinear classifier will be like (14) [28]. 

𝑦 = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖 , 𝑥) + 𝑏

𝑆𝑉

) (14) 

As mentioned earlier, for effective and accurate 

classification, it is necessary to map the input vectors to a 

higher-dimensional space using a nonlinear transformation. In 

practice, this is done indirectly by using well-known kernel 

functions. The most popular kernel functions include linear, 

polynomial, sigmoid, and radial basis functions. 

C.  The Wavelet Transform (WT): 

Before the emergence of the WT, the Fourier transform was 

used as a practical and important tool for the frequency analysis 

of a signal. However, the Fourier transform, being fixed in time 

for a signalto could not detect specific frequencies of a signal at 

different times. To address this issue, STFT was introduced. 

STFT uses a sliding window to extract time-frequency data 

from a signal. However, a challenge arises in determining the 

length of this window, as the window length directly affects the 

frequency resolution of the extracted data. Ultimately, the WT 

was introduced to alleviate some of these issues [29]. 

One instrument for time-frequency analysis of signals is the 

WT, which is especially helpful for studying transitory signals. 

Time-series signals can be divided into several levels using this 

transform. There are high-frequency components in the detail 

levels and low-frequency components in the approximation 

levels. A time-series signal can be broken down into several 

levels, as shown in Fig. 2. 

Among the applications of WT in power systems, we can 

mention transient state analysis [30], power quality assessment 

[31], data compression [32], and fault detection. In the WT, 

various filters, referred to as wavelet functions, are used to 

decompose signals. Eventually, wavelet coefficients at each 

point of the signal (b) and for each scale value (a) can be 

calculated using (15): 

 

Fig. 2. Signal tree analysis using wavelet transform 

 

𝐶𝑊𝑇(𝑎, 𝑏) = 𝑊𝑓(𝑎, 𝑏)

=
1

√𝑎
∫ 𝑓(𝑥) (

𝑥 − 𝑏

𝑎
) 𝑑𝑥

+∞

−∞

= ∫ 𝑓(𝑥)𝜓𝑎,𝑏(𝑥)𝑑𝑥
+∞

−∞

 

(15) 

 

Where 𝑓(𝑥) is the desired signal and ψ(𝑥) is the wavelet 

function. 

III.  INTELLIGENT RESTRICTED EARTH FAULT 

PROTECTION SCHEME 

In order to enhance the performance of the REF relay 

intelligently, it is essential to consider that this relay functions 

effectively in the case of internal faults. However, it still 

exhibits incorrect behaviour during severe external faults and 

inrush currents, which can be attributed to the fixed settings of 

the relay under various operational conditions [33]. The 

characteristic of the biased REF protection used in this article 

is illustrated in Fig. 3. The relay settings can be chosen to make 

the relay more sensitive to internal faults. Still, it should be 

noted that this may lead to an increased rate of false relay 

operations in the presence of external faults and inrush currents. 

Therefore, there is a strong need for intelligent relay adaptation 

and decision-making based on the prevailing conditions. In this 
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regard, this research proposes an intelligent structure based on 

wavelet transform for REF protection. 

As seen in Fig. 3, the differential currents and the resistor 

current are considered as determining variables in the 

performance characteristic of the mentioned relay. These 

currents are calculated using (16) and (17). In these equations, 

𝐼𝑎 , 𝐼𝑏 , 𝐼𝑐 represent phase currents, and 𝐼𝑛 is the neutral current. 

It's worth noting that the manufacturer provides a detailed 

description of this characteristic and its recommended settings 

in [34]. 

𝐼𝑑𝑖𝑓𝑓 = |𝐼𝑎 + 𝐼𝑏 + 𝐼𝐶 − 𝐼𝑛| (16) 

𝐼𝑏𝑖𝑎𝑠 = 0.5(𝑚𝑎𝑥{|𝐼𝑎|, |𝐼𝑏|, |𝐼𝑐|} + |𝐼𝑛|) (17) 

In light of these explanations, the first step is to select 

suitable input parameters for training the PNN and SVM. The 

differential current in the REF protection scheme appears due 

to internal faults, but in external fault conditions and the 

presence of a power transformer, the transformer saturation 

causes the appearance of differential current. As a result, it is 

possible to differentiate between internal, external, and inrush 

currents using the distinct waveform forms of the differential 

currents. The differential current from the power transformer 

simulation under different operating conditions, such as internal 

fault, external fault, and inrush current, is taken into 

consideration as an input parameter for the wavelet transform 

based on the explanations given. To conduct simulation studies, 

the power system shown in Fig. 4 is considered, which includes 

a 230 kV/63.5 kV power transformer and a current transformer 

and ground. The specifications of the current transformers are 

listed in Table I. 

Slope 1 = 0%

Trip region

1

0.1

Ibias (pu)

Id
if

f (
p

u
)

 
Fig. 3. Characteristic of the REF protection scheme 

TABLE I 

Specifications of Current Transformer 

 
Current transformer 

ratio 

Current transformer 

model 

LV side 2000/1 30 VA, 5P20 

HV side 600/1 30 VA, 5P20 

 

 
Fig. 4. The power system under study 

This power system has been simulated using the reputable 

software PSCAD/EMTDC. For simulating the current 

transformer, a detailed model known as the Jiles-Atherton 

model is utilized. The sampling frequency in the simulations is 

set at 2500 Hz. Therefore, for the power system under study, 

which operates at a frequency of 50 Hz, one cycle consists of 

50 samples, and according to the Nyquist theorem, harmonics 

up to the 25th harmonic can be extracted. 

After analyzing the differential currents using WT and 

extracting the energy of each signal, the obtained data is 

separated according to the type of differential current resulting 

from internal faults, external faults, and inrush current. These 

data are collected in matrices. Then, the values in these matrices 

are normalized to be in the range between 0 and 1 to prepare 

them for training the PNN and SVM. 

In the next step, matrices 𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 , 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  and 𝐹𝑖𝑛𝑟𝑢𝑠ℎ are 

created, which contain feature vectors extracted under internal 

fault, external fault, and inrush current conditions. These 

matrices are used as training samples for the SVM and PNN. 

Finally, the input matrix for training is formulated according to 

(18), and the output matrix, as described in (19). It's worth 

noting that the number of columns in the input and output 

matrices are the same. The implementation steps of the 

proposed algorithm are illustrated in the flowchart shown in 

Fig. 5. 

𝐼𝑛𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥

= [[𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙4∗600
][𝐹𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙4∗800

][𝐹𝐼𝑛𝑟𝑢𝑠ℎ∗600
]] 

(18) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥 = [1    ⋯     1  2     ⋯       2] (19) 

IV.  SIMULATION AND RESULT EVALUATION 

As previously explained in the preceding sections, a large 

number of simulation results were generated for various 

operating conditions of a power transformer, including internal 

faults, external faults, and inrush currents. To obtain a 

comprehensive spectrum of internal faults, parameters such as 

fault resistance, fault inception time, and magnetic flux density 

decay of the current transformers were considered. For inrush 

current studies, it was assumed that the power transformer is 

energized from a 230 kV source with the nominal load 

connected at 63 kV. Three different values of fault resistance 

were considered for internal faults, ranging from zero Ω to a 

resistance that results in approximately 10% of the nominal 

current. Four different fault inception times, spaced 5 ms apart 

(from 100 ms to 115 ms), were considered for each fault 

scenario. Additionally, for current transformers, magnetizing 
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inrush current with densities of 85%+, 0, and 85%- of the 

nominal load current wastaken into account. In total, 600 cases 

of internal faults were used for training the classifiers, and 300 

cases were used for testing. Similarly, for external faults, 

numerous severe cases iuding single-phase-to-ground, phase-

to-phase, and two-phase-to-ground faults, as well as three-

phase faults were simulated to obtain the necessary data for 

training the classifiers. Again, four different fault inception 

times, spaced 5 ms apart, were considered. Different 

magnetizing inrush current conditions, as well as varying 

voltage angle settings, were applied for the current 

transformers. In total, 800 cases of external faults were used for 

training, and 400 cases were used for testing the PNN and SVM 

classifiers. 

 
Fig. 5. Flowchart of the proposed method 

All these steps, including simulation and evaluation, were 

carried out using MATLAB on a computer with a dual-core 

processor running at 2.6 GHz and 8 GB of RAM. The 

simulation settings, times, and results of the proposed method 

for both the PNN and SVM classifiers are presented in Tables 

II and III. Additionally, the classification accuracy of the 

classifiers in detecting internal faults, external faults, and inrush 

currents is provided in Tables IV and V.  As shown in Table II, 

the required training time for the PNN and SVM is 3.27 ms and 

9.338 ms, respectively. Also, as seen in Figs. 6 and 9, the 

execution time of these classifiers, considering the training time 

and the time interval between the start of the differential current 

and the issuance of the trip command by the REF protection, is 

7.6 ms and 9.34 ms for the PNN and SVM, respectively. 

The results obtained from the evaluation of the PNN show 

that this classifier correctly detected all internal faults without 

any false alarms, demonstrating its high sensitivity (Figs. 7 and 

8). Additionally, out of 400 cases of external faults and 400 

cases of inrush currents, only 1 false alarm was observed for 

each type when using the PNN, indicating its high accuracy and 

reliability compared to other protection schemes (Fig. 9 and 

11). In the results of the SVM classifier, it correctly detected all 

300 cases of internal faults (Fig. 10 and 12). However, in the 

case of external faults, out of the 400 simulated scenarios, it 

falsely triggered in 20 cases, issuing trip commands when it 

should not have (Fig. 10). 

TABLE II 

Settings and Simulation Time 

Method Setting 
training 

time(s) 

Execution 

time (ms) 

PNN in the proposed 

method 

Activation coefficient 

σ=0.05 
0.00327 7.6 

SVM in the proposed 

method 

Radial basis kernel 

function C=1000 
0.009338 9.34 

REF protection 

scheme proposed by 

MICOM 

Manufacturer's 

recommended settings 

in [34] 

- 0.1 

The PNN used in 

[22] 
- 0.1 5 

The protection 

scheme presented in 

[35] 

Radial basis kernel 

function C=1000 
1.4 2.6 
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protection scheme 
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Fig. 6. Performance of REF relay during internal fault with PNN classifier 

 
Fig. 7. Performance of REF relay during external fault with PNN classifier 

 

 
Fig. 8. Performance of REF relay during inrush current passage with 

PNN classifier 

 

 
Fig. 9. Performance of REF relay during internal fault with SVM classifier 

 

It is worth noting that the speed of these protection schemes 

is somewhat lower compared to conventional REF protection 

due to the higher computational load. Nevertheless, they still 

offer suitable protection while achieving their intended 

protection objectives. Table IV and V provide the accuracy 

rates of each classifier in detecting various conditions. In Table 

IV, the PNN classifier performed perfectly in detecting internal 

faults but had a single false alarm in external fault and inrush 

current detection. In Table V, the SVM classifier also correctly 

detected all internal faults and inrush currents but had 176 false 

alarms in external fault detection. Remarkably, out of these 176 

false alarms in external fault detection, 156 were classified as 

inrush currents and 20 as internal faults, contributing to the 

misoperation of the REF protection relay. 

 
Fig. 10. Performance of REF relay during external fault with SVM classifier 

 
Fig. 11. Performance of REF relay during inrush current passage with 

SVM classifier 
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TABLE IV 

Evaluation of the Accuracy Of The Proposed Method in Detecting 

Different Conditions Using the PNN Classifier 

 PNN classifier Overall accuracy (%) 

The number of internal fault 

misdiagnosis 
0 100 

The number of external fault 

misdiagnosis 
1 99.75 

The number of the inrush 

current misdiagnosis 
1 99.75 

Total percentage  99.83 

 
TABLE V 

Evaluation of the Accuracy of the Proposed Method in Detecting Different 

Conditions Using the SVM Classifier 

 SVM classifier Overall accuracy (%) 

The number of internal fault 

misdiagnosis 
0 100 

The number of external fault 

misdiagnosis 
176 56 

The number of the inrush 

current misdiagnosis 
0 100 

Total percentage  85.34 

V.  CONCLUSIONS 

The REF protection scheme proposed in this study is a type 

of differential protection used to detect single-phase faults to 

ground at the power transformer terminals and wire-to-core 

faults. The current protection strategy still has difficulties 

identifying exterior faults with huge current magnitudes, 

especially during the inrush current induced by transformer 

saturation, even though it shows great accuracy and speed in 

detecting internal faults. To address the issue of maloperation 

of this protection relay in detecting external faults and inrush 

currents, a new intelligent protection scheme based on PNN 

classification has been introduced. The evaluation results have 

demonstrated that this protection scheme significantly 

improves the detection of external faults and inrush currents. It 

has been shown that the PNN classifier outperforms SVMs and 

other conventional protection methods, accurately detecting all 

internal faults. However, one limitation of this proposed 

protection scheme is the execution time or processing time of 

the algorithm, which is longer compared to conventional 

protection methods due to higher computational requirements. 

Nonetheless, the proposed protection scheme remains suitable 

for protection research, and the evaluation results indicate its 

high accuracy and safety. Another advantage of this method is 

its flexibility, as it does not require specific conditions or 

constraints for the use with different types of transformers and 

currents. The authors recommend exploring other classification 

methods and intelligent techniques for future research in REF 

protection. 
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