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Abstract-- Predicting pedestrians' intentions to cross paths with 

cars, particularly at intersections and crosswalks, is critical for 

autonomous systems. While recent studies have showcased the 

effectiveness of deep learning models based on computer vision in 

this domain, current models often lack the requisite confidence for 

integration into autonomous systems, leaving several unresolved 

issues. One of the fundamental challenges in autonomous systems 

is accurately predicting whether pedestrians intend to cross the 

path of a self-driving car. Our proposed model addresses this 

challenge by employing convolutional neural networks to predict 

pedestrian crossing intentions based on non-visual input data, 

including body pose, car velocity, and pedestrian bounding box, 

across sequential video frames. By logically arranging non-visual 

features in a 2D matrix format and utilizing an RGB semantic map 

to aid in comprehending and distinguishing fused features, our 

model achieves improved accuracy in pedestrian crossing 

intention prediction compared to previous approaches. Evaluation 

against the criteria of the JAAD database for pedestrian crossing 

intention prediction demonstrates significant enhancements over 

prior studies. 

Index Term: Pedestrian crossing intention detection, Self-driving 

cars, Body pose keypoints, Convolutional neural network, 

Semantic map 

I.  INTRODUCTION 

           ccurately forecasting  pedestrian behavior is critical  for 

           self-driving car safety, especially when people are 

crossing junctions or walking in the vehicle's path. In non-

autonomous systems, the driver detects a pedestrian's intention 

to cross or not cross the street and takes the appropriate action. 

However, with self-driving cars, this involves a broad 

comprehension of the scene as well as the extraction of crucial 

components for an intelligent model. To attain high accuracy, 

the proposed model must comprehend the significance of each 

extracted feature in the final prediction as well as learn the 

correlation between features in terms of time and location. 

Previous research often relied on single-frame analysis using 

convolutional neural networks (CNNs), neglecting the temporal 

continuity between frames [1]. This oversight can significantly 

reduce the accuracy of pedestrian behavior prediction. A group 

of methods using the architecture of transformers try to learn 

long-range dependencies for input characteristics and predict 

                                                           
1. Department of Electrical and Computer Engineering, Isfahan University of 
Technology, Isfahan8415683111, Iran. 

the pedestrian crossing event [19-21]. Another group of 

methods tries to predict the pedestrian crossing event by 

combining all the features, such as the pedestrian gesture and 

bounding box and the speed of the moving vehicle, using 

attention mechanisms and recurrent networks [15-18]. Some 

other methods use adversarial generative models to predict the 

pedestrian crossing event. These methods predict the event by 

learning the pedestrian movement distribution and its 

movement patterns [22, 23]. 

Models utilizing recurrent neural networks (RNNs) and long 

short-term memory (LSTM) have made strides in pedestrian 

behavior prediction by accounting for spatial and temporal 

continuity between frames [2-5]. However, recurrent neural 

networks have the problem of gradient vanishing in long 

sequence lengths and will make mistakes in learning long-term 

sequences [6]. As a result, they will have difficulty learning the 

dependency of features in the temporal context between frames. 

The purpose of this work is to enhance the effectiveness of 

video-based algorithms in predicting pedestrian crossing 

intentions at junctions or streets. In other words, predicting 

whether or not the i-th pedestrian would cross the crossing in 1 

to 2 seconds in the future, as detected and recorded by the car's 

front camera in the preceding m consecutive frames. Fig.1 

provides a clear illustration of this technique. In all sequences, 

there are 15 observed frames for each pedestrian. Also, the 

timing of the last observed frame is around 1 to 2 seconds (30 

to 60 frames) before the commencement of the crossing or not 

crossing event [4] (as supplied in the JAAD dataset annotation 

[1]). Based on traffic studies involving pedestrians and self-

driving cars, a window of one to two seconds before the 

occurrence was selected [7]. A certain amount of time needs to 

be set up for emergency action, even though it is rare that a 

pedestrian will cross a street or crossroads in less than two 

seconds [8–9]. Furthermore, because most traffic events are 

unexpected and human reaction dynamics are complex, it is not 

practicable to estimate a longer time frame for a pedestrian's 

movement. 

This paper is structured as follows: Section II describes the 

proposed method, including the input data structure and the 

design of the model. Section III presents the research results, 

and Section IV discusses and concludes the findings. 
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Fig. 1. The operation of predicting pedestrian crossing or not crossing the intersection. According to the sets of observed frames, this operation predicts the event 
of passing or not passing the pedestrian in the future so that the self-driving vehicle has enough time to react to the behavior of the pedestrian.

II.  RESEARCH METHOD 

A.  Problem Statement 

Pedestrian crossing intention prediction is defined as 

follows: given a sequence of input frames from the vehicle's 

front view and the vehicle's speed, the proposed model predicts 

the probability that the target pedestrian (pedestrian i) will cross 

the road: 

Predicti= P(Cross | F1, F2, ..., Fm, V)                                     (1) 

Where, 𝐹𝑚 represents the non-visual features extracted from 

frame m and 𝑉 represents the speed of the moving vehicle. 

From the input frames, the pedestrian's body key points pose 

and bounding box coordinates are extracted and fed to the 

model in separate channels along with the vehicle's speed. The 

inputs of the proposed model can be categorized as follows: 

1.  Past 2D location of pedestrian𝑖: This input is calculated 

for 𝑚 consecutive frames based on the bounding box 

coordinates [1]. The 2D location is formed from the coordinates 

of the top-left and bottom-right corners of the bounding box as 

follows: 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =  [𝑥𝑡𝑙 , 𝑦𝑡𝑙 ,                                𝑥𝑏𝑟 , 𝑦𝑏𝑟]                   (2) 

2.  Keypoint pose [2] of pedestrian𝑖: This component 

indicates the pedestrian's motion state in each frame and is 

indicative of the pedestrian's intention to cross or not cross the 

intersection. Since the JAAD dataset does not provide 

pedestrian keypoint poses, we use the pre-trained OpenPose 

model [10] to extract the pedestrian's keypoints. This is done as 

follows: 

𝑃𝑜𝑠𝑒 =  [𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥18, 𝑦18]                                          (3) 

And is a 36-dimensional vector of the 2D coordinates of 18 

pedestrian joints. That is: 

𝑃𝑜𝑠𝑒 =  [𝑃1, 𝑃2, . . . , 𝑃18]                                                              (4) 

The structure of the pedestrian keypoint pose is shown in 

Fig. 2. 

3. Speed of the moving vehicle: This component is one of the 

main factors influencing the decision of pedestrians to cross or 

not cross the intersection. 

 

 
Fig. 2. The structure of 18 gesture points of the key points of the pedestrian 

body in [11] 

 

The JAAD dataset annotates the speed of the autonomous 

vehicle qualitatively. That is, the speed component will have a 

value between 0 and 4 for different states. The details of speed 

assignment are shown in Table I. 

TABLE I 

 Speed Component Assignment 

Speed Status Autonomous Vehicle Speed 

Accelerating (increasing speed) 0 

Accelerating (decreasing speed) 1 

Moving fast 2 

Moving slowly 3 

Stopped 4 

B.  Model Architecture 

The proposed model architecture for pedestrian crossing 

intention prediction is shown in Fig. 3. In this structure, the 

values of the three components of the moving vehicle's speed, 

the 2D coordinates of the pedestrian's location (bounding box), 

and the coordinates of the keypoints of the pedestrian's body 

pose for 𝑚 = 15 consecutive frames are input to the data 

module as input data. In the data module, the data preparation 

process is performed for input to the CNN model. The structure 

of each of the input components is shown in Table II. 
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Fig. 3. The structure of the designed model 

TABLE II 

Structure of Each Input Component 

Input Data Type Data Dimensions for One Frame 

Speed of the moving vehicle 1*1 

2D coordinates of the 

pedestrian (Bounding Box) 
1*4 

Keypoint coordinates of the 

pedestrian's body pose 
2*18 

C.  Data Module 

In this module, the three input data components for each 

frame are separately arranged in a regular structure in the form 

of a matrix, as shown in Figure 4-right. In order for the 

convolutional neural network to understand each of the features 

placed in the input matrix and the importance of their 

arrangement, a semantic map like Figure 4-left in the form of a 

3D tensor is attached to the feature matrix and fed to the 

network as input. 

D.  Semantic Map 

The semantic map is an RGB image with dimensions of 4 * 

20 * 20 pixels that is attached to the feature matrix and helps 

the model learn and separate the features and their importance 

in the final prediction. Considering the convolution of filters on 

the input data in each convolution layer in a CNN network, the 

structure of the arrangement of each of the feature components 

of the input data in the form of a two-dimensional matrix along 

with an RGB image as a semantic map can be stated as follows: 

• The bounding box component indicates the coordinates of 

the two bottom-right and top-left points of the bounding box, 

each point having two components 𝑥 and 𝑦. 

Since the dimensions of the bounding box data for each 

frame are in the form of a vector with dimensions of 4 * 1, each 

of these components is placed in a corner of the input data 

matrix. The pedestrian's body keypoint pose component 

consists of 18 keypoints from the joints of the pedestrian's body, 

each point having two components 𝑥 and 𝑦. Therefore, the 

pedestrian's body keypoint pose feature is placed in the middle 

of the input data matrix. On the other hand, since the speed 

component of the moving vehicle affects the changes in all 

keypoints of the pedestrian's body and also the coordinates of 

the pedestrian's bounding box, it must have spatial correlation 

with all elements of the other two features. Therefore, the outer 

layer of the input matrix is completely filled with the speed 

component. 

 
Fig. 4. The designed semantic map for combining non-visual features in each 

frame on the left and the non-visual feature matrix on the right. In the semantic 

map, the color blue represents the bounding box component, the color red 

represents the pedestrian's keypoint pose component, and the color white 

represents the speed of the moving vehicle component. 

Now, for 15 consecutive frames, the input data matrix is 

generated, and all these matrices and their semantic maps are 

attached to each other in chronological order. The final input 

data for each sequence of 15 frames will be a tensor with 

dimensions of 4 * 60 * 20 (4 channels; each channel width is 20 

and each channel length is 60, which is the result of appending 

15 frames with a width of 4). The final structure of the semantic 

map for 15 consecutive frames is shown in Fig. 5. 

Since the semantic map of each frame is attached to the input 

data matrix, the CNN network will also have a complete 

understanding of the importance of each of the input features, 

so that it will learn the impact of each feature on the other 

feature and the temporal texture information of each feature 

over 15 consecutive frames and the importance of their 

relationship in the prediction process. 
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Fig 5: The final structure of the semantic map for 15 consecutive frames. 

E.  Convolutional Neural Networks (CNNs): 

A deep convolutional neural network consists of several 

convolutional layers. In the first layer of a convolutional neural 

network, simple visual features such as edges or color spots are 

usually extracted. Then, in the next layers, the features of the 

previous layer are combined. Adding more layers extracts 

higher-level features such as faces, depending on the type of 

input data and the application of the problem. In other words, 

each layer in a convolutional neural network acts as a feature 

extractor module, and the input of each layer, except for the first 

layer, which is the raw image, is the features extracted from the 

previous layer. In general, CNNs perform very well whenever 

the input data structure is important and contains information. 

Because these networks pay attention to the relationship and 

correlation between the elements of the input image [12].   

In our suggested model, we deploy a novel convolutional 

neural network structure that does not accept an image as input 

but rather the extracted non-visual properties, which are 

organized in a logical matrix and coupled to a semantic map. 

This function is similar to deleting the first layer of a 

convolutional neural network and preprocessing the non-visual 

characteristics before sending them to the second layer of the 

convolutional neural network. Figure 6 illustrates the 

construction of the developed CNN model. 

III.  EXPERIMENTS 

A.  Evaluation Metrics: 

    In this paper, the accuracy, AUC, F1 score, precision, and 

recall metrics are used to evaluate the results more accurately 

[11]. 

B.  Dataset: 

    In this paper, the JAAD dataset [1] is used to train and test 

the proposed model. This dataset consists of two subsets with 

the following specifications: 

1. Behavioral data: This dataset includes pedestrians crossing 

(495 sequences) or about to cross (191 sequences). 

2. All data: This dataset contains additional pedestrians (2100 

sequences) with non-interactive actions. 

The training, evaluation, and test data splits are provided by 

the JADD dataset [1]. Approximately 60% of the sequences are 

assigned to the training dataset, 30% to the test dataset, and 10% 

to the evaluation dataset. Since this paper only focuses on 

predicting whether or not a pedestrian will cross, only the 

behavioral data dataset is considered and evaluated. 

In this paper, the JAAD (joint attention for autonomous 

driving) dataset [1] is used to train and test the proposed model. 

This dataset is specifically designed to capture a wide range of 

pedestrian behaviors and interactions with vehicles in urban 

settings, making it a valuable resource for developing 

pedestrian intention prediction models. 

C.  Implementation: 

    The implementation details of the model are shown in Table 

III. A dropout layer with a value of 0.5 is also considered in 

each layer to prevent over fitting of the model. 

 

 

 
Fig6. The structure of the designed CNN model 
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TABLE III 

 Implementation Details of the Designed Model 

Parameter Name Value or Type 

Number of epochs 60 

Input batch size 64 

Cost function Binary cross-entropy 

Optimization algorithm Adam [14] 

Learning rate 0.01 

IV.  RESULTS 

A.  Experimental Results 

 The experimental results are reported in Table IV. These 

results are compared with the SR [2], SF-GRU [16], PCPA [13], 

and FusionFeature [15] models.  

 
TABLE IV 

 Experimental Results on the Behavioral Data Dataset 
Model 

Name 
ACC AUC 

F1 

score 
Precision Recall Average 

SR  0.59 0.52 0.71 0.64 0.80 0.65 

SF-GRU  0.58 0.56 0.65 0.68 0.62 0.61 

PCPA  0.53 0.53 0.59 0.66 0.53 0.56 

Fusion 

Feature  
0.62 0.54 0.74 0.65 0.85 0.68 

Semantic 

Map 

(our)  

0.64 0.55 0.78 0.68 0.99 0.72 

 

The superior performance of our model can be attributed to 

the innovative use of the semantic map and the structured 

feature selection process. The semantic map provides spatial 

and contextual awareness, enabling the model to better 

understand the relationships and dependencies between 

different features, such as pedestrian poses, bounding boxes, 

and vehicle speed. This holistic understanding is critical for 

accurately predicting pedestrian intentions, especially in 

complex and dynamic environments. 

Moreover, the structured feature selection ensures that 

relevant features are highlighted and utilized effectively, 

improving the model's ability to make accurate predictions. 

This combination of semantic mapping and feature selection 

creates a more comprehensive and nuanced representation of 

the scene, leading to improved performance across various 

metrics. 

B.  Computational Cost Analysis 

   The computational cost of the proposed model is a critical 

factor for its deployment in real-time self-driving applications. 

We have conducted a thorough analysis of the model's 

performance in terms of processing time and memory usage. 

TABLE V 
 Results of Processing Time and Memory Usage 
Model GPU (Tesla T4) Intel Xeon CPU 

SR  602.1 FPS 413.4 FPS 

SF-GRU  401.5 FPS 214.7 FPS 

PCPA  211.4 FPS 107.6 FPS 

Fusion Feature  182.3 FPS 91.3 FPS 

Semantic map (ours) 1215.88 FPS 798.84 FPS 

 

Processing Time: The average processing time per frame is 

approximately 1.2 milliseconds on a high-performance GPU 

(NVIDIA Tesla T4). This processing time includes semantic 

map generation and the convolutional neural network (CNN) 

inference.  

GPU Performance: 

The Semantic Map model operates at 1215.88 FPS, making 

it approximately 9 times faster than the Fusion Feature [15] 

model (182.3 FPS), 8 times faster than the PCPA [13] model 

(211.4 FPS), and 5 times faster than the SF-GRU [16] model 

(401.5 FPS). The SR model [2], with a processing time of 602.1 

FPS, is also significantly outperformed. 

The remarkable processing speed of our proposed model can 

be attributed to the efficiency of the semantic map and the 

structured feature selection process. By effectively organizing 

and prioritizing features, our model minimizes the 

computational overhead typically associated with complex 

feature interactions. This streamlined approach ensures rapid 

inference, which is crucial for real-time applications in self-

driving cars. 

C.  Impact of the Semantic Map 

The semantic map significantly enhances the CNN's ability 

to understand and differentiate between various input features. 

The ablation study results, presented in Table VI, clearly show 

the improvement in prediction accuracy when the semantic map 

is included.  

TABLE VI 
 Results of Ablation Study 

Model 

type 
ACC AUC 

F1 

score 
Precision Recall Average 

Without 

Semantic 

Map 
0.52 0.51 0.57 0.57 0.58 0.55 

With 

Semantic 

Map 
0.64 0.55 0.78 0.68 0.99 0.72 

The results clearly demonstrate the positive impact of 

incorporating the semantic map into our model. The significant 

improvements across all performance metrics underscore the 

importance of the semantic map in enhancing the model's 

predictive capabilities. The semantic map helps the model to 

better understand the spatial and contextual relationships 

between features, leading to more accurate and reliable 

predictions. This makes our proposed approach not only faster 

but also more effective in real-world applications, such as 

predicting pedestrian intentions in self-driving cars. 

D.  Performance in Scenarios with Occlusions and Multiple 

Pedestrians 

Scenarios with occlusions and multiple pedestrians present 

significant challenges for pedestrian intention prediction 

models. Occlusions can obscure key visual features needed for 

accurate pose estimation, while multiple pedestrians increase 

the complexity of the scene, requiring the model to distinguish 

between individuals and their respective actions. 

Handling Occlusions: 

Pose Estimation with Occlusions: When a pedestrian is 
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partially obscured, keypoint identification may be hindered. 

Our approach uses sequential frames to infer missing keypoints 

while taking temporal continuity into account. If keypoints are 

obscured in one frame, the model leverages information from 

prior and subsequent frames to forecast the missing points. 

The semantic map contributes to the model's ability to 

maintain spatial awareness and contextual knowledge even 

when specific aspects are obscured, hence boosting its 

robustness to partial occlusions. 

If the degree of blockage is higher than 15 consecutive 

frames (pedestrian observation time), the critical information 

for recognizing the pedestrian movement pattern is naturally 

lost, and the model performs poorly. 

Handling Multiple Pedestrians: 

Feature Separation: The input data structure, including 

bounding boxes and keypoint poses, ensures that features 

corresponding to different pedestrians are processed separately, 

reducing confusion and improving prediction accuracy. The 

input data to the model includes the bounding box, the speed of 

the moving vehicle, and the pose of the pedestrian's body for 15 

consecutive frames, joined together in a specific structure and 

entered into the model. In other words, the desired model 

performs the prediction operation separately for each 

pedestrian, and the presence of several pedestrians does not 

create a problem for the model. It is assumed that the operation 

of pedestrian detection has been done before the operation of 

predicting the pedestrian crossing event with high accuracy, and 

the purpose of this article is not to detect and track pedestrians. 

Also, the JAAD dataset has prepared input data for the model 

for each pedestrian separately in the form of a sequence with 15 

consecutive frames, solving the problem of multiple pedestrians 

in the scene at the same time. 

Experimental Results: 

To evaluate the model's performance in these challenging 

scenarios, we conducted experiments using a subset of the 

JAAD dataset specifically annotated for occlusions and scenes 

with multiple pedestrians. 

TABLE VII  
Results of Occlusion Scenarios 

Model 

type 
ACC AUC 

F1 

score 
Precision Recall Average 

With 

Occlusion 

Scenarios 
0.63 0.55 0.76 0.66 0.91 0.70 

Without 

Occlusion 

Scenarios 
0.64 0.55 0.78 0.68 0.99 0.72 

Occlusion Scenarios: The model maintains an accuracy of 

63% in scenarios with partial occlusions, demonstrating its 

ability to infer missing information from temporal data. 

E.  Sensitivity to Keypoint Pose Estimation Errors 

   The accuracy of pedestrian keypoint pose estimation is crucial 

for the performance of our proposed model. Since the keypoints 

are extracted using the OpenPose model, it is important to 

understand how errors in this estimation process impact the 

prediction of pedestrian crossing intentions. 

Impact of Keypoint Pose Estimation Errors: 

   To evaluate the sensitivity of the model to pose estimation 

errors, we conducted a series of experiments where varying 

levels of Gaussian noise were added to the keypoint 

coordinates. The performance of the model was then assessed 

under these conditions. 
TABLE VIII 

 Results of Sensitivity Analysis 
Model 

type ACC AUC 
F1 

score 
Precision Recall Average 

Without 

Noise 
0.64 0.55 0.78 0.68 0.99 0.72 

With Low 

Noise: 

Gaussian 

noise ( 𝝁 =
 𝟎, 𝝈 =  𝟏) 

0.60 0.51 0.67 0.59 0.79 0.63 

With High 

Noise 

( 𝝁 =  𝟎,
𝝈 =  𝟏𝟎) 

0.51 0.50 0.51 0.46 0.56 0.50 

The sensitivity analysis demonstrates that the model's 

performance degrades as the noise level in keypoint pose 

estimation increases. This highlights the importance of accurate 

keypoint detection for reliable pedestrian intention prediction. 

Ensuring high-quality keypoint extraction is essential for 

maintaining the model's effectiveness in real-world 

applications. These results underscore the need for robust pose 

estimation techniques and possible noise reduction methods to 

enhance the overall performance of the proposed model. 

V.  DISCUSSION AND CONCLUSION: 

In this paper, we proposed a novel method for predicting 

pedestrian crossing intentions using non-visual features. This 

method combines non-visual features and employs a semantic 

map to prepare structured data in the form of a 4-dimensional 

tensor for the CNN network. By leveraging the feature 

extraction capabilities of CNNs on data structured similarly to 

images and videos, the designed model outperforms previous 

models. 

Our experimental results on the JAAD dataset demonstrate 

that the proposed method achieves superior performance in 

pedestrian action prediction evaluation metrics compared to 

existing methods. Additionally, our model exhibits better 

performance in terms of response speed, surpassing all existing 

models. The introduction of the semantic map theory, coupled 

with the new feature selection structure, contributes to the 

model's robustness and accuracy. 

The strengths of our model lie in its innovative feature 

extraction approach, the effectiveness of the semantic map, its 

high response speed, and its overall good and acceptable 

performance. These attributes make our model a valuable 

contribution to the field of pedestrian intention prediction in 

self-driving cars. 

A.  Limitations of the JAAD Database: 

While the JAAD dataset is comprehensive in capturing 

urban pedestrian interactions, it has several limitations that 

could affect the generalizability of our findings: 
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 Limited Geographic Diversity: The dataset primarily 

consists of videos recorded in specific urban 

environments. This narrow geographic focus may not 

represent the wide range of conditions self-driving cars 

will encounter globally, such as in rural areas or different 

cultural settings. 

 Weather and Lighting Conditions: The dataset includes 

limited variations in weather and lighting conditions. 

Real-world scenarios often involve challenging 

conditions such as heavy rain, fog, nighttime driving, 

and intense sunlight, which are underrepresented in the 

JAAD dataset. 

 Pedestrian Behavior Variability: The behaviors recorded 

in the dataset might not fully encompass the diversity of 

pedestrian interactions worldwide. This includes 

variations due to cultural differences in crossing 

behavior, jaywalking, and interactions with other road 

users, which are crucial for developing robust and 

generalizable pedestrian intention prediction models. 

Incorporating Environmental Factors 

Environmental factors, such as traffic signals and weather 

conditions, play a crucial role in pedestrian behavior and 

decision-making processes. Integrating these factors into our 

model can provide a more comprehensive understanding of the 

context in which pedestrian actions occur, thereby improving 

prediction accuracy. 

By acknowledging these limitations, we can better 

understand the context of our findings and identify areas for 

future research to enhance the robustness and applicability of 

pedestrian intention prediction models in diverse real-world 

scenarios. 

B.  Generalizability to Real-World Scenarios: 

   While our model shows improved performance on the JAAD 

dataset, it is crucial to consider its applicability to real-world 

scenarios with higher variation.  We have expanded the 

discussion on how our findings might generalize to real-world 

scenarios, considering the limitations of the dataset. This 

section also suggests future work to enhance the robustness and 

applicability of our model. 

 

 Dataset Augmentation: To improve generalizability, 

future work could augment the training data with 

synthetic examples that simulate diverse weather, 

lighting, and geographic conditions. 

 

 Field Testing: Extensive field testing in varied 

environments is essential to validate the model's 

performance and make necessary adjustments based 

on real-world feedback. 

C.  Model adaptability:  

Adaptability of the Model to Predict Other Pedestrian 

Actions The architecture of our proposed model is designed to 

be flexible and extensible, making it suitable for predicting a 

range of pedestrian actions beyond crossing intentions. The key 

components of the model, such as the convolutional neural 

network (CNN) and the semantic map, can be adapted to learn 

and recognize different types of pedestrian behaviors. 

 Walking Straight: To predict whether a pedestrian will 

continue walking straight, additional features such as the 

pedestrian’s trajectory and orientation over time can be 

incorporated into the model. 

 Waiting: Predicting if a pedestrian will wait can involve 

analyzing stationary periods and body language cues, 

which can be integrated into the input features. 

 Other Actions: The model can be extended to predict 

other actions, such as turning, stopping, or interacting 

with other pedestrians, by including relevant contextual 

information and motion patterns. 

 Required Modifications: To adapt the model for these 

predictions, the following modifications may be 

necessary: 

 Additional Training Data: Collecting and annotating 

datasets that include various pedestrian actions and their 

corresponding labels. 

 Feature Engineering: Introducing new features that 

capture different aspects of pedestrian behavior, such as 

velocity vectors, interaction with the environment, and 

temporal patterns. 

 Model Training: Retraining the model with the extended 

dataset and features to learn the new action classes. 
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