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Abstract-- Channel coding is a vital component within digital 

telecommunications, helping to deal with unwanted factors like 

noise and enabling the establishment of a more robust 

communication link. Among the most renowned coding schemes 

are linear block codes, for which a variety of decoding methods 

have been proposed in recent years. This paper demonstrates how 

a linear block coding problem can be expressed as a Probabilistic 

Graphical Model (PGM). We then explain how Probabilistic 

Programming Languages (PPLs), which are tools for solving such 

PGMs, can be used to decode this type of coding. Employing the 

Figaro programming language, as a PPL, we have simulated the 

decoding of several famous linear block codes and found that the 

results of our proposed method closely match those of existing 

techniques. Our approach offers several advantages, such as the 

flexibility to utilize diverse inference methods, the ability to choose 

between hard and soft decoding dynamically, and the 

implementation of a wide range of coding techniques. PPLs also 

enable the adjustment of decoding algorithm parameters and the 

estimation of channel conditions, ultimately enhancing the 

receiver's adaptability to varying channel conditions. Finally, we 

discuss the advantages and disadvantages of our proposed method. 

 

 
Index Terms-- Channel Decoding, Linear Block Code (LBC), 

Probability, Probabilistic Graphical Model (PGM), Probabilistic 

Programming Language (PPL), Bit-Error Rate (BER). 

Nomenclature 

I.  INTRODUCTION 

 nformation theory and coding constitute a crucial field 

  within telecommunications, primarily focused on reducing 

data transmission errors [1]. Telecommunications systems 

employ different resources such as frequency, time, and code, 

each of which has inherent limitations necessitating 

optimization strategies for effective resource utilization. By 

employing data coding and decoding techniques, 

telecommunication systems strive to optimize some resources 

utilization. Ensuring error-free transmission and reception of 

data is of paramount importance in these systems. However, 

factors such as noise, limited transmitter power, and 

environmental conditions introduce errors, prompting 

 
1 The term coding/decoding in this paper refers to "channel coding/decoding", 

which is described in Section II. 
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numerous studies aimed at minimizing data errors [2]. Channel 

 coding is one of the methods used to reduce these errors and to 

deal with them. Over the years, several methods have been 

introduced for encoding and decoding data [1,3]1. 

Decoding methods in telecommunications exhibit a wide 

range of diversity and can be implemented using FPGA, ASIC 

circuits, software programs, and other approaches [4,5]. 

Numerous techniques have been employed for data decoding, 

including Belief Propagation (BP), Junction Tree (JT), 

Successive Cancellation (SC), Trellis, and more [1,3,6–8]. 

However, existing decoding methods suffer from certain 

limitations, such as: 

- Utilization of only one or two decoding methods [9], 

- Sole reliance on either hard or soft decoding algorithms [7,10], 

- Implementation of only a limited subset of available decoders 

[9,11,12], 

- Limited flexibility in modifying decoding parameters [4], 

- Default probabilistic parameter settings, among others. 

In this paper, we propose a novel approach to address these 

limitations in linear block codes. We introduce a general and 

flexible decoding method based on Probabilistic Programming 

Languages (PPL). 

Some decoders can be represented as Probabilistic Graphical 

Models (PGMs) [4,13]. These decoders consist of 

interconnected nodes and edges, forming a PGM that captures 

the decoding problem. Since communication channels 

introduce random errors, decoding can be formulated as a PGM 

inference problem. Probabilistic Programming Languages 

(PPLs) have emerged as a field of study for accurate inferences 

in graphical networks, supporting both Bayesian and Markov 

graphs, referred to as directional and non-directional graphs, 

respectively. Figaro is one such PPL, implemented as a 

functional, object-oriented library in Scala [14,15]. 

Linear block codes, such as Hamming, LDPC, and polar 

codes, can be represented as probabilistic graphs [4,6,16,17]. 

Decoding methods for these codes often leverage graph and 

probability theory, making PGM-based methods suitable for 

decoding. Despite the various capabilities of PPLs, our studies 

indicate that they have not been extensively utilized in 

communication channel decoding. The novelty of our paper lies 
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in the application of PPLs for decoding, aiming to open new 

horizons in channel decoding based on PPLs. Furthermore, we 

demonstrate the versatility of PPLs in addressing various 

aspects of channel coding. 

Our goal in this paper is to demonstrate how a linear block 

coding problem can be executed using a probabilistic 

programming language. Since this paper is interdisciplinary 

research and some of the esteemed readers may not have a 

telecommunications background, we have provided some 

coding theory details. These details help us better understand 

how linear block decoding is performed with the help of PPL. 

According to the simulations we have conducted, using PPL for 

linear block decoding does not improve the error rate. However, 

it brings along a wide range of other applications for us. 

The remainder of this paper is structured as follows: Section 

II provides an overview of communication channels, their 

diagrams, and channel coding/decoding. Section III introduces 

linear block codes, probabilistic programming languages, and 

briefly highlights their strengths. We specifically present Figaro 

briefly as an example of a PPL. The objective of Sections II and 

III is to illustrate how a linear block coding problem can be 

transformed into a probabilistic graphical problem. In Section 

IV, we present our proposed method for utilizing PPLs in data 

decoding. Section V presents the results obtained from 

implementing the proposed method on Hamming codes across 

different channels. Section VI discusses the advantages and 

disadvantages of the proposed method. Finally, Section VII 

concludes the paper by providing closing remarks and 

suggestions. 

II.  BACKGROUNDS: COMMUNICATION CHANNEL, 

CODING AND DECODING 

Over the past three decades, the advancement of digital 

processors has revolutionized the field of telecommunications, 

transitioning it from analog to digital systems [18]. This shift 

has been driven by the utilization of digital signal processing 

capabilities, resulting in the majority of communications being 

conducted in the digital domain. Fig. 1, provides an overview 

of the block diagram of a digital telecommunications system 

[1]. In this block diagram, the source data, typically in analog 

form, is initially converted to digital format. It then proceeds 

through several blocks in the transmitter, including the source 

encoder, channel encoder, and modulator, before being 

transmitted. At the receiver, the demodulator receives the 

transmitted data, demodulates it, and passes it to the channel 

decoder. Subsequently, it undergoes source decoding, and 

finally, the received data is converted back to analog using a 

digital-to-analog converter (DAC). If the source data is 

inherently digital, the analog-to-digital converter (ADC) and 

digital-to-analog converter (DAC) blocks can be omitted from 

the diagram. 

In the following subsections, we will provide a brief 

explanation of some of the blocks depicted in Fig. 1, and 

elaborate on how noise introduces a probabilistic problem at the 

receiver. 

A.  Modulator and Demodulator 

Modulation and demodulation techniques are utilized to 

effectively utilize frequency space, reduce antenna length in 

wireless systems, and increase the number of users in a given 

medium [18]. Digital telecommunication systems employ 

various modulation methods, primarily categorized based on 

frequency, amplitude, and phase [18]. Some applicable 

modulation schemes include M-ary Quadrature Amplitude 

Modulation (M-QAM), M-ary Phase Shift Keying (MPSK), 

Quadrature Phase Shift Keying (QPSK), and Code Division 

Multiple Access (CDMA) [2,19]. 

A key parameter used in modulation analysis is the bit error 

probability at the receiver, which is typically a function of the 

main signal power to noise signal power ratio (SNR). A higher 

SNR indicates a higher quality signal. Equations (1), (2), and 

(3) calculate the probability of bit errors in the receiver for 

QPSK, MPSK, and M-QAM modulations in an Additive White 

Gaussian Noise (AWGN) channel. These equations 

demonstrate how the received signal is transformed into a 

probabilistic signal during its passage through the channel in 

the presence of noise [20]. 
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In these equations, 𝑄(0) represents the evaluation of the Q-

function as defined in (4), and 𝛾𝑏 denotes the ratio of signal 

energy to noise energy at the receiver. M indicates the number 

of transmitted symbols. By determining the value of M based 

on the modulator's structure and calculating 𝛾𝑏 based on the 

channel conditions, the error probability at the receiver can be 

computed. The determination of whether a sent bit corresponds 

to 0 or 1 is not a deterministic value but is obtained with a 

probability within the range of [0, 1]. 
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Once again, we emphasize that the objective of this paper is 

to demonstrate how a linear block decoding problem can be 

executed using probabilistic programming languages. 

Therefore, while equations (1) to (4) have not been directly 

utilized in the subsequent sections of this paper, their 

presentation aids in better understanding how linear block 

decoding is transformed into a probabilistic problem. 

Understanding this concept helps us articulate one of the main 

ideas behind utilizing PPL for linear block decoding more 

effectively. 
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Fig. 1.  Digital Communication Block Diagram 

B.  Channel and Noise 

The channel model is determined by considering the 

characteristics of the channel itself, the type of noise present, 

and the models employed to describe error probabilities. In 

wireless channels, well-known models such as Rayleigh, 

Rician, and Nakagami are utilized. On the other hand, the 

Binary Symmetric Channel (BSC) and Binary Erasure Channel 

(BEC) find common use in twisted-pair wire transmission 

environments. The Binary AWGN (BAWGN) model applies to 

both wireless and wired channels. To provide further 

clarification, (5) presents the Probability Density Function 

(PDF) of SNR in the Rayleigh channel. In this equation, 𝛾0 

represents the SNR of the AWGN channel, 𝜎2 denotes the noise 

variance, and x represents a random variable [20]. 

𝑓(𝑥) =
1

2𝛾0𝜎2
exp (

−𝑥

2𝛾0𝜎2
) ; 𝑥 ≥ 0 

(5) 

 

According to this equation, each received bit at the receiver 

is subject to a probabilistic error, and the magnitude of this error 

depends on the SNR. 

C.  Channel Coding 

Coding theory is commonly applied in telecommunications, 

encompassing four main areas: source coding, channel coding, 

data encryption, and line coding [1,3,21,22]. Channel coding 

plays a crucial role in addressing the aforementioned errors. 

Various coding/decoding methods exist, each designed to 

detect or correct specific channel errors. For instance, Reed-

Solomon codes are employed for burst error detection and 

correction in satellite communications [23] while LDPC ( Low 

Density Parity Check) codes are utilized in 10GBase-T Ethernet 

[16,17]. 

The Bit Error Rate (BER) is a significant criterion for 

evaluating coding performance. A lower error rate is preferable 

for a given SNR. In practice, the BER typically ranges from    

10-1 to 10-7 [24]. However, this value can vary according to 

different applications and conditions. Coding complexity is 

another criterion used for evaluation. 

It is important to note that various decoding approaches may 

be available for a particular coding method. Therefore, 

 
2 Most of the content in this section, and its two sub-sections, are adapted 

from [1,3] and are interpreted by the authors. 

selecting a method with lower delay, complexity, and energy 

consumption is desirable, although achieving all of these 

criteria simultaneously may not be possible. 

III.  LINEAR BLOCK CODE AND PROBABILISTIC PROGRAMMING 

LANGUAGE 

In this section, we provide a brief overview of linear block 

codes, specifically focusing on the Hamming code as an 

illustrative example. We then proceed to provide a concise 

explanation of PPLs, with a particular emphasis on Figaro as a 

PPL language. The objective of this section is to demonstrate 

how a linear block code can be represented as a PGM and how 

Figaro can operate as a PPL. 

A.  Linear Block Coding2 

Linear block codes belong to a category of codes used in 

information theory and coding. The term "block" signifies that 

the encoder processes multiple input bits together, and the 

decoder decodes them as a group. The term "linear" indicates 

that the sum of any two valid codewords will also be a valid 

codeword. These codes are created using a generator matrix 

(𝑮). If the number of input bits in the encoder block is 𝑘 and the 

number of output bits is 𝑁, the dimension of the 𝑮 matrix is 

𝑘 × 𝑁 (𝑤ℎ𝑒𝑟𝑒 𝑘 < 𝑁). The relationship between the input bits 

(𝒅) and the output codeword (𝒄) is represented by (6). 

𝒅𝟏×𝒌 ∙ 𝑮𝒌×𝒏 =  𝒄𝟏×𝒏 (6) 

Some well-known linear block codes include Hamming, 

Reed-Muller, BCH, LDPC, and Reed-Solomon, among others. 

Additionally, Convolutional codes are not inherently block 

codes, but they can be treated as block codes when they operate 

on fixed-length blocks of input data. 

Hamming codes are particularly popular and are represented 

as [2𝑟 − 1. 2𝑟 − 𝑟. 3]. The expression 2𝑟 − 1 indicates the 

number of bits in the decoder output, while 2𝑟 − 𝑟 denotes the 

number of input bits. The minimum distance of 3 indicates the 

code's ability to detect two bits of error and correct one bit of 

error. For example, when 𝑟 = 3, 𝑁 = 7, and 𝑘 = 4. Fig. 2, 

illustrates an example of the 𝑮 matrix for 𝑟 = 3, while Fig. 3, 

depicts the graphical representation of (6) for this example. 

Different linear block codes employ various methods to 

generate the 𝑮 matrix. 
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1 0
0 1

0 0
0 0

    
1 1 1
1 0 1

0 0
0 0

1 0
0 1

    
1 1 0
0 1 1

) 

 

Fig. 2.  𝑮 matrix for a specific given Hamming (7,4) 
 

 
Fig. 3.  Relationship between input data of an encoder and corresponding 

output using the 𝑮 matrix in Fig. 2 
 

B.  Probabilistic Programming Language 

In many real-world problems, uncertainty plays a significant 

role, resulting in the presence of random values and 

probabilistic parameters. Probabilistic Reasoning Systems 

(PRSs) offer effective approaches to tackle such problems. 

When there is a general understanding of the problem, the 

components of the problem can be reasoned about using logic. 

However, as the complexity of the problem increases and 

additional contextual or auxiliary data becomes available, direct 

inference using traditional PRS methods becomes challenging 

or even infeasible. Fig. 4, depicts the model of a probabilistic 

reasoning system, which comprises the following components: 

i.Probabilistic Model: This component represents the general 

knowledge about a particular situation. It incorporates the 

probabilistic relationships and dependencies among variables. 

ii.Evidence: refers to the information and observations available 

about the situation. It provides input to the reasoning system 

and influences the answers to queries. 

iii.Queries: Queries represent the questions or specific aspects 

we seek to know or infer about the situation. 

iv.Inference Algorithm: The inference algorithm utilizes the 

probabilistic models and the available evidence to determine 

the answers to the queries. It performs the necessary 

computations and reasoning steps to make probabilistic 

inferences. 

 

 
Fig. 4.  Probabilistic Reasoning System Model [14] 

 
3 The contents of this section are derived from [14]. 

PRSs offer flexibility and find applications in three key areas 

[14]: (1) Predicting future events based on the available 

knowledge and evidence, (2) Inferring causes of an event that 

enables reasoning about the underlying causes behind 

observable phenomena, and (3) Learning from past events to 

improve their predictive capabilities for the future. 

By incorporating historical data and observations, the system 

can refine its probabilistic models and enhance its accuracy. 

Two important tools commonly used in PRS are Bayesian 

Networks (or belief networks) and Hidden Markov Models 

[14]. 

    1)  Figaro 

Based on the investigations we have conducted, over 50 

probabilistic programming languages have been introduced in 

the past decade. The diverse applications of these languages 

have led research teams in various fields to develop different 

probabilistic programming languages [25]. Major companies 

like Google, Amazon, and Microsoft utilize these programs for 

various applications such as video recommendations, software 

troubleshooting, cyber-attack prediction, and more [14]. Some 

notable PPL projects include seismic analysis as a global 

seismo-acoustic bulletin [26], cognitive sciences research [27], 

malware detection in systems [28], evaluating PPLs for 

simulating quantum correlations [15] and using probabilistic 

graphical models (PGMs) for solving biological network 

problems [29]. 

Figaro3 is a prominent example of a PPL. Its name is derived 

from Wolfgang Amadeus Mozart's opera, "The Marriage of 

Figaro." Figaro is implemented as a library in Scala and has 

been under development since 2009 by Avi Pfeffer and his 

colleagues. It is compatible with IDEs like IntelliJ IDEA. 

Practical projects using Figaro include space object 

identification, target tracking, malware analysis, and soil 

drainage prediction, among others, developed by Pfeffer and his 

team. 

One of the strengths of PPLs is their ability to model 

complex probabilistic graphical problems that are challenging 

to solve using conventional methods. As shown in Fig. 4, to 

utilize a PPL like Figaro, users need to develop a probabilistic 

graphical model in collaboration with domain experts. These 

models often take the form of directed graphs with parent-child 

nodes or undirected Markov graphs, with or without hidden 

layers. Observations are then applied to the model, and one or 

more inference algorithms are used to provide answers to 

specific queries. Fig. 5 illustrates the steps involved in using 

Figaro as a probabilistic programming language. 

Figaro employs various elements, with the two main types 

being Atomic and Compound. Typically, queries in Figaro 

revolve around future event probabilities or causal 

relationships. 

Figaro, as a probabilistic programming language, can be 

executed in two ways: line by line or within a main method. 

However, there are certain limitations when constructing 

models in Figaro. For instance, some functions have constraints 

on the number of inputs or variables they can handle. 
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Fig. 5.  Figaro Programming Language Model 

 

Figaro incorporates various elements to define probabilistic 

models. Some of the important elements are as follows: (1) 

Atomic and discrete elements: These include elements like 

Select and Flip. For example, Flip (0.4) represents a variable 

that, in each program run, has a 0.4 probability of being true and 

a 0.6 probability of being false, (2) Atomic and continuous 

elements: These include elements like Uniform and Normal. 

For instance, Uniform (10,30) represents a variable that 

generates a decimal number within the range of [10, 30] with 

equal probability, (3) Compound and discrete elements: Figaro 

also provides compound elements with discrete values, such as 

Select and Flip, and (4) Compound and continuous elements: 

Similar to atomic elements, compound elements can also have 

continuous distributions. Functions like Uniform and Normal 

can be used, where the input is a probabilistic value rather than 

a fixed number. For example, a = Uniform (0,1) and b = Flip (a) 

define a variable 'a' that generates a decimal number within the 

range of [0,1] with equal probability. The value of 'a' then serves 

as the input to the function 'b', which outputs true with a 

probability equal to 'a'. 

Other important elements in Figaro are used to establish 

relationships between variables in the probabilistic graph 

model. Elements like Chain and Apply are employed to connect 

variables in directional graphs and define parent-child 

relationships. Conditional Probabilistic Distribution (CPD) and 

RichCPD are used to determine the probabilistic relationship 

between multiple variables. 

Figaro provides two categories of inference algorithms: 

factored and sampling, each comprising multiple algorithms. 

The Variable Elimination (VE) algorithm is an accurate 

factored method that infers based on the moral graph and 

systematically eliminates variables. Belief Propagation (BP) is 

another algorithm that is faster than VE but less accurate. It 

operates using a message passing algorithm. Sampling 

Algorithms (SA) utilize sampling theories and central limit 

theorems to provide approximate inference with adjustable 

accuracy. They are generally faster than factored methods. 

Figaro incorporates additional elements, functions, and 

methods, which are described in detail in [14]. 

IV.  PROPOSED METHOD: LINEAR BLOCK CODE DECODING BY 

PPL 

In this section, our objective is to showcase the 

transformation of a linear block coding problem into a PGM. 

We will also elucidate how the structure of linear block codes 

aligns with the framework of probabilistic problems. 

Furthermore, we have demonstrated how the Figaro language 

can implement this PGM model as a PPL. 

Based on Section III and the block diagram of the digital 

telecommunications system in Fig. 1, the input data to the 

channel encoder block is a bit string [𝑑1 𝑑2 … 𝑑𝑘], where 𝑑𝑖 

takes on values of 0 or 1 for 𝑖 ranging from 1 to 𝑘. The output 

of this block is denoted as [𝑐1 𝑐2 … 𝑐𝑁], where 𝑐𝑖 takes on values 

of 0 or 1 for 𝑖 ranging from 1 to 𝑁. Here, 𝑁 and 𝑘 are integers, 

with 𝑘 < 𝑁. For convenience, we consider 𝑑𝑖 and 𝑐𝑖 to be 

binary. At this point, we will ignore the modulator and 

demodulator blocks. The coded data passes through the 

channel, where additive noise is introduced. The receiver string 

is represented as [𝑐1̃ 𝑐2̃ … 𝑐𝑁̃], where c𝑖̃ = 𝑐𝑖 + 𝑛𝑖 for 𝑖 ranging 

from 1 to 𝑁, and 𝑛𝑖 represents the channel noise. 

In the receiver, the bit string [𝑑1̃ 𝑑2̃ … 𝑑𝑘̃] is extracted from 

the bit string [𝑐1̃ 𝑐2̃ … 𝑐𝑁̃] using decoding methods. Techniques 

that directly utilize the [𝑐1̃ 𝑐2̃ … 𝑐𝑁̃] bit strings are referred to as 

soft-decoding methods. On the other hand, hard-decoding 

techniques present the received bit string as the correct alphabet 

of coded data. Soft-decoding methods often come with higher 

costs but offer increased accuracy [1]. 

One notable feature that distinguishes various coding 

methods is their ability to detect and correct errors. By 

incorporating modulator and demodulator blocks into this 

model, the [𝑐1 𝑐2 … 𝑐𝑁] bit string in the transmitter is sent as a 

single-bit or multi-bit. For instance, in BPSK modulation, the 

data is modulated and transmitted one by one, while in QPSK 

modulation, two bits are modulated and demodulated together 

[2]. 

As discussed in Section II, BER value is utilized to assess 

and compare the performance of different coding methods. In 

coding, where the [𝑐1 𝑐2 … 𝑐𝑁] bit string is a linear combination 

of [𝑑1 𝑑2 … 𝑑𝑘], its probabilistic graphical model can be 

represented as shown in Fig. 6. 

 

 
Fig. 6.  Probabilistic graphical model of linear block coding 

 

From the receiver's perspective, the challenge lies in 

extracting the [𝑑1̃ 𝑑2̃ … 𝑑𝑘̃] bit string from the received [𝑐1̃ 

𝑐2̃ … 𝑐𝑁̃] bit string. If 𝑑𝑖̃ =  𝑑𝑖 for all 𝑖, then there are no errors 

in the receiver. However, if any 𝑑𝑖̃ does not match its original 

value, an error has occurred. Without coding, it would be 

impossible to detect such errors if the 𝑑𝑖̃s were to encounter 

errors while crossing the channel. 

- Importing libraries 

- Main loop: 

   - Defining and/or declaring probabilistic and non-

probabilistic variables  

   - Making probabilistic graphical model via functions and 

methods 

   - Applying observations and/or conditions and/or 

constraints 

   - Calling inference algorithm method via libraries 

   - Applying inference algorithm to queries 

   - Printing or storing results 

- End of loop 
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From the perspective of PRSs and based on Fig. 6, the 

problem entails establishing a probabilistic graphical model 

between 𝑑𝑖 and c𝑖̃, while also determining the probabilistic 

model of the noise. The observed c𝑖̃s serve as the basis for 

calculating the probability of 𝑑𝑖 occurrences. In other words, 

the problem can be expressed as finding 𝑝(𝑑𝑖|𝒄̃), where 𝒄̃ 

represents the observed [c1̃ c2̃ … c𝑁̃]. If 𝒅 is a binary variable, 

the relationship d𝑖̃ = 𝑅𝑜𝑢𝑛𝑑(𝑝(𝑑𝑖|𝒄̃)) is established. 

Based on Fig. 6, and utilizing Fig. 3, the probabilistic 

graphical model for the aforementioned example is constructed. 

This model encompasses the input bits of the encoder, its 

output, channel noise, and the received bits at the receiver. Fig. 

7, displays the complete PGM model for this simple Hamming 

(7,4) code. 

 

 
Fig. 7.  PGM model of Hamming code in Fig. 3 

 

If we want to explain the proposed methods based on Fig. 4 

blocks (section III, part B, cases i to iv) and Fig. 7, it goes as 

follows: 

i: The probabilistic model is equivalent to the relationship 

between the input bits (what the sender has transmitted) and the 

received bits. For example, in Fig. 7, 𝑐5̃ at the receiver is a 

combination of the first three bits at the sender and then 

combined with noise (𝑐5̃ = 𝑑1 +  𝑑2 + 𝑑3 + 𝑛5). The sample 

code we have written for this bit in the Figaro language is as 

follows: 

 
 

In this code, the “Select function” chooses a value between 

0 and 1 with equal probability. The “Apply” function is used to 

combine multiple variables. The “Normal” function represents 

the normal distribution, with its input equal to Ebn0 (i.e. 

N(0,Ebn0)). In this code, “y1” to “y4” correspond to 𝑑1 to 𝑑4 

and “channeli” is equivalent to 𝑛𝑖 and "chri" is equivalent to 𝑐𝑖̃. 

This part of the code in Figaro represents the probabilistic 

model. For simplicity, we did not include the definition of the 

required libraries and some functions in this code. The complete 

codes are provided in the supplementary file of this paper. 

ii: Our observations are equivalent to the bits received at the 

receiver, i.e., the bit string 𝐜. In Figaro language, it is 

represented as follows: 

 
 

In this part of the code, first, a function named “threshold” 

is defined, and this function is applied to the variable “chri”. 

The variables “ri” are defined to apply the above function to 

“chri”. The function “r1.observe” is used to determine what the 

observed bit was at the receiver. In this example, if the observed 

bit at the receiver is equal to 0, the “false” will be inserted, and 

if it is equal to 1, the “true” will be inserted. Please note that the 

program can be written in a different way, where instead of 

true/false, we can use the values 0 and 1. In that case, some 

definitions and functions such as “threshold” will change. 

iii, iv: The query we perform involves determining the 

probability that the input bit has a specific value, such as 0 or 1, 

based on the probabilistic model we constructed in the first part 

and the observations we have. If the probability value is greater 

than 0.5, the input bit is considered equivalent to the queried 

bit, otherwise, its negation will be the answer. See the code 

snippet below. The code presented below illustrates three 

distinct approaches to inference. Depending on the specific 

application, any of these three methods can be utilized. Here, 

we have provided all three methods to offer a clearer insight 

into Figaro. 

 
 

In this part, three different reasoning methods are observed. 

The first method is the Belief Propagation (BP) method, which 

is executed for 50 iterations. In this example, the question asked 

is the probability of the input bit being equal to 1. Another 

method is the Sampling Algorithm, where we solve the problem 

using 50 samples. The last method is Variable Elimination, 

which we briefly explained in previous sections. 

To provide further explanation, we first formulated a 

probabilistic model of the problem. Then, based on the value of 

Ebn0, we added noise. Next, we assumed that we observed a bit 

stream at the receiver. Based on the observation, the question 

asked is the probability of the input bit number 1 (or any) being 

  val y1=Select(0.5->1,0.5->0) 

  ... 

  val y4=Select(0.5->1,0.5->0) 

  val p1 = Apply(y1,y2,y3,(a:Int , b:Int , c:Int)=>(a+b+c)%2) 

  val p2 = Apply(y1,y3,y4,(a:Int , b:Int , c:Int)=>(a+b+c)%2) 

  val p3 = Apply(y1,y2,y4,(a:Int , b:Int , c:Int)=>(a+b+c)%2) 

  val Ebn0 = 0.125 

  val channel1 = Normal(0,Ebn0) 

  ... 

  val channel7 = Normal(0,Ebn0) 

  val chr1 = Apply(y1,channel1,(a:Int , b:Double)=>a+b) 

  ... 

  val chr7 = Apply(p3,channel7,(a:Int , b:Double)=>a+b) 

 

  def threshold(d: Double) = d > 0.5 

  val r1 = Apply(chr1,threshold) 

  ... 

  val r7 = Apply(chr7,threshold) 

  r1.observe(true or false) 

  ... 

  r7.observe(true or false) 

  //Inference with Belief Propagation 

  val iteration_BP = 50 

  val algorithm1 = BeliefPropagation(iteration_BP, y1) 
  algorithm1.start() 

  println("x1 from BP: " + algorithm1.probability(y1, 1)) 

  algorithm1.kill() 
  //Inference with Sampling Algorithm 

  val samples = 50 

  val salgorithm1 = Importance(samples, y1) 
  salgorithm1.start() 

  println("x1 from SA : " + salgorithm1.probability(y1, 1)) 

  salgorithm1.kill() 

  //Inference with Variable Elimination 
  println("x1 from VE : " + VariableElimination.probability(y1, 1)) 



Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE)                                      15 

 

1 (or 0). If this probability is greater than 0.5, the input bit is 

considered to be 1 (or 0). If it is less than 0.5, the input bit is 

considered to be 0 (or 1). If it is exactly 0.5, we can predefine a 

value for it.  

As is common in simulating the calculation of BER, the 

program is executed for a large number of different inputs to 

compute its value. 

V.  IMPLEMENTATION AND RESULTS 

In this section, the applicability and practicality of using PPL 

in decoding linear block codes are illustrated through 

simulations conducted with Figaro. Several linear block codes, 

including Hamming (7,4), Hamming (15,11), LDPC (14,8), 

Convolutional (16,5) (or Convolutional (2,1,3)), and Polar 

(16,8), are chosen to demonstrate how PPL can decode these 

codes with Hamming distances of 3, 3, 3, 6, and 4, respectively. 

As previously mentioned, it should be noted that Convolutional 

codes are not inherently block codes. However, they can be 

considered block codes when they operate on fixed-length 

blocks of input data. 

In these simulations for the BSC channel, the Hamming (7,4) 

code is implemented using three inference methods: Variable 

Elimination (VE), Simulated Annealing (SA), and Belief 

Propagation (BP), as implemented in Figaro. For the BAWGN 

channel with BPSK modulation, all the mentioned codes are 

simulated using the same inference methods. The assumptions 

made during these simulations are as follows: 

- The generator matrix 𝑮 for Hamming (7,4) is considered as 

shown in Fig. 2. The 𝑮 matrix for Hamming (15,11) is obtained 

from [30] , for LDPC (14,8) and Convolutional (16,5) from [1], 

and for Polar (16,8) from [31]. 

- No modulation is used in the BSC channel, while BPSK 

modulation is used in the BAWGN channel. The probability of 

error in BPSK modulation is calculated using (1). 

- The bits' occurrence probability is assumed to be equal and set 

to 0.5 in binary mode (See section IV, “Select” function 

descriptions). Additionally, these bits are assumed to be 

independent of each other. 

- The hard-decoding method is selected for implementation. 

We have used IntelliJ IDEA to compile Figaro codes. We 

have included the sample codes that we have written in Figaro 

language as supplementary files attached to the paper. 

Mathematical calculations and the generation of BER diagrams 

are performed using Wolfram Mathematica software. As you 

know, the horizontal axis of the BER curve represents the SNR, 

signal energy, or probability of error, while the vertical axis 

indicates the bit error rate. 

A.  Binary Symmetric Channel 

Fig. 8, displays the BER diagram for the probability of bit 

error ranging from 0.05 to 0.1 in the BSC channel for Hamming 

(7,4) code. The diagram compares four different modes: 

decoding using Variable Elimination (VE), decoding using 

Belief Propagation (BP) with 25 iterations, decoding not used, 

and decoding using Sampling Algorithm (SA) with 250 

samples. Based on Fig. 8, it is evident that the use of Hamming 

decoding with VE and BP methods in PPL does not outperform 

the case where decoding is not utilized.  

 

 
Fig. 8.  BER diagram for comparison between the three inference methods in 

BSC channel for Hamming (7,4) decoding and uncoded data 

 

The results obtained from the PPL methods align with the 

previous methods [32]. However, it is important to note that the 

BP method exhibits a significant advantage when the bit error 

exceeds 0.03. On the other hand, it is highly inefficient for 

values lower than 0.03. 

Fig. 9, showcases the impact of changing the number of 

iterations on the BER value in the BP method, with a channel 

error probability of 0.04. Table I, which corresponds to Fig. 9, 

reveals that increasing the iteration count in the BP method 

from 5 to 30 leads to a decrease in the BER value from 0.2 to 

0.014. This implies that higher iteration numbers in the BP 

method generally contribute to enhanced coding accuracy. 

Although Hamming (7,4) is one of the simplest codes, and there 

exist very simple and low-complexity methods for decoding it, 

we have used this simple code to demonstrate the impact of 

various inference parameters used in PRS models. 
 

 
Fig. 9.  The effect of increasing iteration in the BP algorithm for BSC 

channel for Hamming (7,4) decoding per probability of error 0.04 

 
 

TABLE I 

Data Related to Fig. 9 

BER Iterations 

0.216231 5 

0.14722 10 

0.11968 15 

0.08565 20 

0.03076 25 

0.01459 30 
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B.  AWGN Channel 

In order to demonstrate the performance of using PPL in 

decoding linear block codes, simulations are conducted in the 

AWGN channel with BPSK modulation. The SA inference 

algorithm is employed, and the BER is calculated for different 

sampling values and compared with the exact value obtained 

from (1). Fig. 10, provides a comparison between the exact 

value and the SA method for two sampling values, 2.5 × 106 

and 105. It is evident that increasing the number of samples 

leads to improved accuracy. Furthermore, it demonstrates that 

PPL is capable of accurately calculating the BER for linear 

block coding with very good precision. 

 

 
Fig. 10.  Comparison of BER in AWGN channel with BPSK modulation by 

SA method with 2.5 × 106 samples (blue), 105 samples (magenta), and exact 

value (red) for uncoded data 

 

Fig. 11, illustrates the BER diagram in the AWGN channel 

with BPSK modulation for various decoding schemes, along 

with a comparison with existing methods. The considered 

decoding schemes are uncoded data transmission, Hamming 

(7,4) with VE inference (with an Abstraction value of 500) and 

SA method (with 2000 samples), and Hamming (15,11) with 

VE inference. The results are compared with (7,4) for the VE 

method (with an Abstraction value of 500) and the SA method 

(with 2000 samples), compared with [33,34] and [30], 

respectively. The comparison demonstrates that the proposed 

method yields acceptable results, with the BER values in the 

proposed method and existing methods being close to each other. 

Fig. 12, presents a comparison of different decoding 

schemes with their common decoding methods in the AWGN 

channel with BPSK modulation. The inference method 

employed in this case is VE in PPL. The considered decoding 

schemes are uncoded data transmission, LDPC (14,8), 

Convolutional (16,5), and Polar (16,8). The results are 

compared with [1], [1], and [31], respectively. The comparison 

shows that the proposed method provides comparable results, 

with the BER values in the proposed method and existing 

methods being close to each other (indicated by the dashed lines). 

As evident from Fig. 10 to 12, our proposed method does not 

demonstrate superiority in terms of BER compared to the 

existing methods. We conducted these simulations to illustrate 

that while using PPL alongside its potential advantages, it can 

still provide similar results to the existing methods. This can 

allow us to confidently utilize this method.  

Fig. 13, demonstrates the effect of the number of samples on 

the BER in the SA method. The figure shows that as the number 

of samples increases, the BER value decreases. These values 

are simulated for an Eb/N0 value of 4dB. According to the 

figure, as the number of samples increases from 10 to 1500, the 

BER value decreases from 0.022 to 0.013. 

Finally, Fig. 14, displays a comparison involving the BP 

method with 10 and 30 iterations, as well as uncoded 

transmission for Hamming (7,4). The figure highlights that 

neither of these two modes shows an advantage over uncoded 

transmission, but increasing the number of iterations leads to 

improved results. While increasing the number of iterations 

beyond 50 brings the performance of this inference method 

closer to conventional methods, iterations in the range of 10 to 

30 are typical in traditional methods [35,36]. Furthermore, this 

result indicates that in addition to selecting an appropriate 

inference method and determining its parameters, different 

decoding methods - such as the one we have proposed - can 

yield unacceptable responses compared to other methods.

 

 
Fig. 11.  Comparison of BER for some decoding methods with uncoded (BPSK modulation and AWGN channel). Dashed lines are placed for existing methods, 
also, "Hard" stands for existing 
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Fig. 12.  The BER Comparison; Proposed method (thick lines) with existing (dashed lines); Decoding methods: LDPC(14,8), Polar(16,8), Convolutional(16,5); BPSK 
modulation and AWGN channel); Ex stands for Existing method. 

 

 

 
Fig. 13.  The effect of the SA method sampling number in BER for Hamming (7,4) decoding (Eb/N0 = 4dB) 

 

 
Fig. 14.  The effect of the number of iterations of the BP method on the BER for Hamming (7,4) 
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VI.  ADVANTAGES AND DISADVANTAGES 

In the preceding section, we conducted an implementation 

for decoding linear block codes utilizing Figaro and showcased 

that employing PPLs can yield comparable outcomes to 

existing methods. In this section, we will delve into the 

advantages and disadvantages of employing PPL for decoding. 

By considering the benefits of this approach, we strongly 

believe that the utilization of PPL can be justified. Furthermore, 

with the ongoing advancement of these languages in the future, 

they have the potential to garner increased attention and 

recognition. Finally, we present both advantages and 

disadvantages in Table II. 

A.  Advantages 

Some advantages of the proposed method are described 

below. 

    1)  Utilization of different inference methods 

PPL languages offer support for various inference methods, 

such as VE, BP, SA, and others. Each of these methods has 

distinct advantages in different applications. For instance, SA 

methods tend to be more effective in graph structures 

containing loops, while both VE and BP methods exhibit higher 

accuracy in loop-free graphs. Additionally, as discussed in the 

previous section, different inference methods perform 

differently under varying channel conditions. Comparatively, 

existing decoding methods typically employ one or two 

optimized and fixed methods at the receiver [9]. Therefore, 

incorporating PPL in the receiver enables the selection of 

decoding methods based on prevailing conditions. Further 

explanation is that since the proposed method is based on 

probabilistic programming, we can write a separate code for 

each method. For example, for a specific decoding technique, 

after defining the probabilistic model and variables, we can 

utilize various inference methods. Each method is written in a 

separate code, and the appropriate program will be selected 

based on different conditions. 

    2)  The ability to choose between hard decoding or soft 

decoding methods based on channel conditions 

Conventional methods often implement either soft-decoding 

or hard-decoding exclusively [10]. Soft-decoding methods 

offer greater accuracy and lower error probabilities than hard-

decoding methods under similar channel conditions, albeit at 

the cost of increased computational complexity and latency. 

Using PPL can enable us to have the freedom to choose between 

these two methods. Since this approach is based on 

programming, we can write programs for both methods and, 

based on the channel conditions, use one of them. For example, 

when we have a higher SNR value, we can use the hard method, 

and for lower values, we can use the soft method. 

    3)  Implement a wide range of coding methods 

As demonstrated in Section IV, PPL can implement various 

decoding techniques, including linear block codes, that can be 

modeled as probabilistic graphical models. Traditional 

decoding methods typically focus on implementing one or two 

decoding methods at the receiver [9,11]. Consequently, 

communication between the transmitter and the receiver 

adheres to a specific predetermined standard, utilizing a limited 

set of coding methods. By incorporating PPL, a receiver can 

execute multiple decoding methods based on the prevailing 

conditions. This means that different transmitters can utilize 

different coding methods to send data, and the receiver can 

decode the received data by invoking the appropriate program 

without requiring any hardware modifications. In other words, 

using PPL allows us to have a wide range of linear block codes 

along with various inference methods at the receiver side. For 

each coding method, there exists a separate program, and when 

that coding method is employed, the corresponding program 

will be called and executed. For instance, weaker coding can be 

used when the channel is in good condition, while stronger 

codes can be employed when the channel conditions are 

unfavorable, potentially resulting in energy savings. 

    4)  Ability to set inference algorithm parameters 

In traditional designs, decoding methods typically have fixed 

parameters that are predetermined before implementation. 

However, in PPL methods, the parameters of the inference 

algorithm can be adjusted. For instance, in the BP method, 

parameters such as the number of iterations and execution time 

can be fine-tuned. Similarly, in the SA method, the number of 

samples can be adjusted. The adjustability of these parameters 

enhances the flexibility of the receiver, allowing it to adapt to 

different channel conditions. For example, in poorer channel 

conditions, the number of iterations or samples can be 

increased, while in better conditions, these parameters can be 

decreased. 

    5)  Use machine learning methods to optimize parameter 

setting 

In the previous paragraphs, we discussed the adjustability of 

PPL parameters such as the number of iterations, the number of 

samples, the choice between soft or hard decoding, coding type, 

inference algorithm type, and so on. We also mentioned the 

ability to set appropriate parameters based on channel 

conditions. In the receiver, channel information is continuously 

calculated. By employing machine learning methods and 

utilizing the information on various channel conditions, 

algorithm parameters can be optimized. This allows for the 

selection of the best parameters based on the prevailing 

conditions. Some research and activities in the field of decoding 

involve artificial intelligence and machine learning [17,37–41]. 

Based on the channel conditions and the relationship between 

parameters, a probabilistic graphical model can be created to 

determine optimal parameter settings. This generates a 

probabilistic graphical model problem that can be inferred 

using PPL. Additionally, methods such as clustering or 

classification can be employed to examine channel conditions 

and allocate suitable parameters. Since this approach is based 

on probabilistic programming, it is capable of executing 

machine learning-based methods alongside it. 

    6)  A tool for estimating channel condition 

Various methods exist for estimating channel state 

information. For example, in [42] a new multi-stage detector for 

robust signal and spectrum sensing in cognitive radio is 

introduced, and in [43], authors propose the modified Newton's 

(MN)-based Improved Animal Migration Optimization 

(IAMO) algorithm in MIMO-OFDM systems for channel 

estimation. In wireless telecommunications systems such as 

cooperative computation offloading in mobile edge computing 

systems, which often employ powerful servers without energy 

limitations [44], PPL can serve as an effective tool for 

estimating different channel conditions in various operational 

modes, regardless of its involvement in decoding. In this
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TABLE II.  

Comparison of Advantages and Disadvantages of the Proposed Method to the Other Existing 
No Parameter Proposed Method Other Existing Methods 

1 Multi inference method Yes Up to 2 methods 

2 The ability to choose between hard decoding or soft decoding methods based on 

channel conditions 

Yes Only soft or only hard method 

or hybrid method 

3 Various decoding method implementation Yes Up to 2 methods 

4 Setting inference algorithm parameters Yes Use only default values 

5 Use alongside machine learning Yes Possible not yet used 

6 Estimating channel condition Yes Only with preambles 

7 Adjusting the initial value of probability of bits Yes Usually, equivalent prob. 

8 Large generating matrix (𝑮) Not yet able Some methods are able 

9 Online use Poor Optimized 

10 Energy consumption More than existing Usually optimized 

 

 scenario, the receiver (Access Point or Base Station) receives 

a pilot signal at specified intervals, applies various decoding 

methods to it, and sends the results to the transmitter via the 

downlink. Subsequently, the transmitter can utilize these results 

to select the appropriate decoding method. 

    7)  Adjust the initial probability value of bit or symbol 

occurrence 

PPL provides the capability to determine the initial 

probability value for variables. In telecommunications, 

different symbols have varying probabilities of occurrence. 

Traditional decoding methods often assume equal probability 

for all symbols. However, as the received data in the receiver is 

constantly changing, more accurate probabilities of symbol 

occurrences can be obtained by employing statistical methods 

and storing relevant information. The accuracy of initial 

probabilities for variables directly impacts the effectiveness of 

inference algorithms. Consequently, the more accurate the 

initial probabilities of the variables, the more accurate the 

inference algorithms will be. For further explanation of setting 

initial values, please refer to the code provided in section IV. In 

that code, functions like "Select" can be adjusted with an initial 

value. In that code, the probability values of 0 and 1 are 

considered equal. In applications where these values are not 

equal, the use of PPL can be employed to compute and initialize 

each of the bits. 

B.  Disadvantages 

The proposed method has some limitations, which are 

explained below: 

    1)  Limitations in the development of probabilistic graphs 

PPLs, such as Figaro, have limitations when it comes to 

developing probabilistic graphs. For instance, in Figaro, 

methods like Apply or Chain have a maximum limit of five 

inputs [14]. As a result, analyzing graphs with large parent-

child relationships (i.e., a large 𝑮 matrix) becomes challenging. 

To address this, nested loops must be used, which can slow 

down the compile speed. 

    2)  Compiling speed 

The compiling speed of programs in PPLs depends on the 

skills of the programmer and the optimized code structures. 

With proficient programming and optimized code, programs 

can be compiled at a high speed. However, in channel coding 

applications in telecommunication systems, we have observed 

that the speed of PPL programs is slower compared to common 

methods such as FPGA or ASIC [5,24]. This can limit their 

usability in certain online applications that require processing 

times within the range of 0.5 to 50 milliseconds. For example, 

in the simulations we conducted, the compiling speed for 

Hamming (15,11) decoding using the SA inference method 

with 2000 samples is approximately 3 milliseconds. This 

processing was performed using an Intel Core i5 CPU with a 

frequency of 2.5 GHz and 6 GB of RAM. This compiling speed 

is roughly equivalent to 4 Kbps. 

    3)  Requirement for powerful servers in high-speed data 

transfer applications 

In high-speed applications involving data transfer, PPL data 

decoding necessitates the use of powerful servers. However, 

due to the limitations of mobile phones, it is currently not 

feasible to employ this method on the downlink side, as mobile 

devices may lack the necessary computational capabilities to 

handle the demands of PPL-based decoding. 

    4)  Higher energy consumption 

Despite the mentioned benefits of PPLs, they consume more 

energy in the decoding of communication systems compared to 

existing methods. Consequently, their use may not be cost-

effective in scenarios where there are energy constraints, such 

as in wireless sensor networks [45]. This can be attributed to the 

fact that current methods often involve the design of optimal 

hardware circuits, which are more energy-efficient in practical 

applications. 

Please note that these disadvantages should be considered 

within the context of the specific implementation and 

application of PPLs. Ongoing research and development efforts 



20                                                                                                          Volume 3, Number 3, November 2023 

aim to address these limitations and enhance the efficiency and 

practicality of PPLs in various communication fields. 

C.  The Summary of Advantages and Disadvantages 

Comparison to the Other Existing Methods 

Table II shows the summary of the advantages and 

disadvantages of the proposed method compared with the other 

existing methods. 

VII.  CONCLUSION AND FUTURE WORKS 

This paper explores the use of probabilistic programming 

languages (PPL) for channel data decoding in 

telecommunications, specifically for linear block coding. It 

describes how a linear block coding problem can be 

transformed into a probabilistic graphical model, and how PPL 

can be utilized for decoding, as illustrated through simulations 

using the Figaro programming language. Simulations have 

shown that with skilled programming, the proposed method can 

achieve results similar to existing decoding methods. The 

proposed PPL-based decoding method is shown to be able to 

dynamically adjust parameters based on channel conditions, 

offer flexible decoding approaches, and leverage machine 

learning techniques, making it well-suited for scenarios without 

energy or real-time constraints. The paper also suggests future 

research to further enhance PPL-based probabilistic graphical 

models and apply them to wireless channel estimation. 
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