
Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 9

Abstract-- Channel coding is a vital component within digital

telecommunications, helping to deal with unwanted factors like

noise and enabling the establishment of a more robust

communication link. Among the most renowned coding schemes

are linear block codes, for which a variety of decoding methods

have been proposed in recent years. This paper demonstrates how

a linear block coding problem can be expressed as a Probabilistic

Graphical Model (PGM). We then explain how Probabilistic

Programming Languages (PPLs), which are tools for solving such

PGMs, can be used to decode this type of coding. Employing the

Figaro programming language, as a PPL, we have simulated the

decoding of several famous linear block codes and found that the

results of our proposed method closely match those of existing

techniques. Our approach offers several advantages, such as the

flexibility to utilize diverse inference methods, the ability to choose

between hard and soft decoding dynamically, and the

implementation of a wide range of coding techniques. PPLs also

enable the adjustment of decoding algorithm parameters and the

estimation of channel conditions, ultimately enhancing the

receiver's adaptability to varying channel conditions. Finally, we

discuss the advantages and disadvantages of our proposed method.

Index Terms-- Channel Decoding, Linear Block Code (LBC),

Probability, Probabilistic Graphical Model (PGM), Probabilistic

Programming Language (PPL), Bit-Error Rate (BER).

Nomenclature

I. INTRODUCTION

 nformation theory and coding constitute a crucial field

 within telecommunications, primarily focused on reducing

data transmission errors [1]. Telecommunications systems

employ different resources such as frequency, time, and code,

each of which has inherent limitations necessitating

optimization strategies for effective resource utilization. By

employing data coding and decoding techniques,

telecommunication systems strive to optimize some resources

utilization. Ensuring error-free transmission and reception of

data is of paramount importance in these systems. However,

factors such as noise, limited transmitter power, and

environmental conditions introduce errors, prompting

1 The term coding/decoding in this paper refers to "channel coding/decoding",

which is described in Section II.

1-Faculty of Electrical and Computer Engineering, Semnan University,

Semnan, Iran.

numerous studies aimed at minimizing data errors [2]. Channel

 coding is one of the methods used to reduce these errors and to

deal with them. Over the years, several methods have been

introduced for encoding and decoding data [1,3]1.

Decoding methods in telecommunications exhibit a wide

range of diversity and can be implemented using FPGA, ASIC

circuits, software programs, and other approaches [4,5].

Numerous techniques have been employed for data decoding,

including Belief Propagation (BP), Junction Tree (JT),

Successive Cancellation (SC), Trellis, and more [1,3,6–8].

However, existing decoding methods suffer from certain

limitations, such as:

- Utilization of only one or two decoding methods [9],

- Sole reliance on either hard or soft decoding algorithms [7,10],

- Implementation of only a limited subset of available decoders

[9,11,12],

- Limited flexibility in modifying decoding parameters [4],

- Default probabilistic parameter settings, among others.

In this paper, we propose a novel approach to address these

limitations in linear block codes. We introduce a general and

flexible decoding method based on Probabilistic Programming

Languages (PPL).

Some decoders can be represented as Probabilistic Graphical

Models (PGMs) [4,13]. These decoders consist of

interconnected nodes and edges, forming a PGM that captures

the decoding problem. Since communication channels

introduce random errors, decoding can be formulated as a PGM

inference problem. Probabilistic Programming Languages

(PPLs) have emerged as a field of study for accurate inferences

in graphical networks, supporting both Bayesian and Markov

graphs, referred to as directional and non-directional graphs,

respectively. Figaro is one such PPL, implemented as a

functional, object-oriented library in Scala [14,15].

Linear block codes, such as Hamming, LDPC, and polar

codes, can be represented as probabilistic graphs [4,6,16,17].

Decoding methods for these codes often leverage graph and

probability theory, making PGM-based methods suitable for

decoding. Despite the various capabilities of PPLs, our studies

indicate that they have not been extensively utilized in

communication channel decoding. The novelty of our paper lies

Corresponding author: shahzadi@semnan.ac.ir

A General and Flexible Channel Decoding

Approach Based on Probabilistic

Programming Language

Mohammad Sadegh Rostami1, Ali Shahzadi*1, and Morteza Dorrigiv1

I

mailto:shahzadi@semnan.ac.ir

10 Volume 3, Number 3, November 2023

in the application of PPLs for decoding, aiming to open new

horizons in channel decoding based on PPLs. Furthermore, we

demonstrate the versatility of PPLs in addressing various

aspects of channel coding.

Our goal in this paper is to demonstrate how a linear block

coding problem can be executed using a probabilistic

programming language. Since this paper is interdisciplinary

research and some of the esteemed readers may not have a

telecommunications background, we have provided some

coding theory details. These details help us better understand

how linear block decoding is performed with the help of PPL.

According to the simulations we have conducted, using PPL for

linear block decoding does not improve the error rate. However,

it brings along a wide range of other applications for us.

The remainder of this paper is structured as follows: Section

II provides an overview of communication channels, their

diagrams, and channel coding/decoding. Section III introduces

linear block codes, probabilistic programming languages, and

briefly highlights their strengths. We specifically present Figaro

briefly as an example of a PPL. The objective of Sections II and

III is to illustrate how a linear block coding problem can be

transformed into a probabilistic graphical problem. In Section

IV, we present our proposed method for utilizing PPLs in data

decoding. Section V presents the results obtained from

implementing the proposed method on Hamming codes across

different channels. Section VI discusses the advantages and

disadvantages of the proposed method. Finally, Section VII

concludes the paper by providing closing remarks and

suggestions.

II. BACKGROUNDS: COMMUNICATION CHANNEL,

CODING AND DECODING

Over the past three decades, the advancement of digital

processors has revolutionized the field of telecommunications,

transitioning it from analog to digital systems [18]. This shift

has been driven by the utilization of digital signal processing

capabilities, resulting in the majority of communications being

conducted in the digital domain. Fig. 1, provides an overview

of the block diagram of a digital telecommunications system

[1]. In this block diagram, the source data, typically in analog

form, is initially converted to digital format. It then proceeds

through several blocks in the transmitter, including the source

encoder, channel encoder, and modulator, before being

transmitted. At the receiver, the demodulator receives the

transmitted data, demodulates it, and passes it to the channel

decoder. Subsequently, it undergoes source decoding, and

finally, the received data is converted back to analog using a

digital-to-analog converter (DAC). If the source data is

inherently digital, the analog-to-digital converter (ADC) and

digital-to-analog converter (DAC) blocks can be omitted from

the diagram.

In the following subsections, we will provide a brief

explanation of some of the blocks depicted in Fig. 1, and

elaborate on how noise introduces a probabilistic problem at the

receiver.

A. Modulator and Demodulator

Modulation and demodulation techniques are utilized to

effectively utilize frequency space, reduce antenna length in

wireless systems, and increase the number of users in a given

medium [18]. Digital telecommunication systems employ

various modulation methods, primarily categorized based on

frequency, amplitude, and phase [18]. Some applicable

modulation schemes include M-ary Quadrature Amplitude

Modulation (M-QAM), M-ary Phase Shift Keying (MPSK),

Quadrature Phase Shift Keying (QPSK), and Code Division

Multiple Access (CDMA) [2,19].

A key parameter used in modulation analysis is the bit error

probability at the receiver, which is typically a function of the

main signal power to noise signal power ratio (SNR). A higher

SNR indicates a higher quality signal. Equations (1), (2), and

(3) calculate the probability of bit errors in the receiver for

QPSK, MPSK, and M-QAM modulations in an Additive White

Gaussian Noise (AWGN) channel. These equations

demonstrate how the received signal is transformed into a

probabilistic signal during its passage through the channel in

the presence of noise [20].

𝑃𝑏 = 𝑄(√2𝛾
𝑏
)

(1)

𝑃𝑏 ≈
2

𝐿𝑜𝑔
2
𝑀

𝑄(√2𝛾
𝑏
 𝐿𝑜𝑔

2
𝑀 𝑆𝑖𝑛

𝜋

𝑀
)

(2)

𝑃𝑏 ≈
4

𝐿𝑜𝑔
2
𝑀

𝑄(√
3𝛾

𝑏̅
 𝐿𝑜𝑔

2
𝑀

𝑀 − 1
)

(3)

In these equations, 𝑄(0) represents the evaluation of the Q-

function as defined in (4), and 𝛾𝑏 denotes the ratio of signal

energy to noise energy at the receiver. M indicates the number

of transmitted symbols. By determining the value of M based

on the modulator's structure and calculating 𝛾𝑏 based on the

channel conditions, the error probability at the receiver can be

computed. The determination of whether a sent bit corresponds

to 0 or 1 is not a deterministic value but is obtained with a

probability within the range of [0, 1].

𝑄(𝑥) =
1

√2𝜋
∫ 𝑒−𝑡2/2 𝑑𝑡

∞

𝑥

=
1

2
𝑒𝑟𝑓𝑐(

𝑥

√2
)

(4)

Once again, we emphasize that the objective of this paper is

to demonstrate how a linear block decoding problem can be

executed using probabilistic programming languages.

Therefore, while equations (1) to (4) have not been directly

utilized in the subsequent sections of this paper, their

presentation aids in better understanding how linear block

decoding is transformed into a probabilistic problem.

Understanding this concept helps us articulate one of the main

ideas behind utilizing PPL for linear block decoding more

effectively.

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 11

Fig. 1. Digital Communication Block Diagram

B. Channel and Noise

The channel model is determined by considering the

characteristics of the channel itself, the type of noise present,

and the models employed to describe error probabilities. In

wireless channels, well-known models such as Rayleigh,

Rician, and Nakagami are utilized. On the other hand, the

Binary Symmetric Channel (BSC) and Binary Erasure Channel

(BEC) find common use in twisted-pair wire transmission

environments. The Binary AWGN (BAWGN) model applies to

both wireless and wired channels. To provide further

clarification, (5) presents the Probability Density Function

(PDF) of SNR in the Rayleigh channel. In this equation, 𝛾0

represents the SNR of the AWGN channel, 𝜎2 denotes the noise

variance, and x represents a random variable [20].

𝑓(𝑥) =
1

2𝛾0𝜎2
exp (

−𝑥

2𝛾0𝜎2
) ; 𝑥 ≥ 0

(5)

According to this equation, each received bit at the receiver

is subject to a probabilistic error, and the magnitude of this error

depends on the SNR.

C. Channel Coding

Coding theory is commonly applied in telecommunications,

encompassing four main areas: source coding, channel coding,

data encryption, and line coding [1,3,21,22]. Channel coding

plays a crucial role in addressing the aforementioned errors.

Various coding/decoding methods exist, each designed to

detect or correct specific channel errors. For instance, Reed-

Solomon codes are employed for burst error detection and

correction in satellite communications [23] while LDPC (Low

Density Parity Check) codes are utilized in 10GBase-T Ethernet

[16,17].

The Bit Error Rate (BER) is a significant criterion for

evaluating coding performance. A lower error rate is preferable

for a given SNR. In practice, the BER typically ranges from

10-1 to 10-7 [24]. However, this value can vary according to

different applications and conditions. Coding complexity is

another criterion used for evaluation.

It is important to note that various decoding approaches may

be available for a particular coding method. Therefore,

2 Most of the content in this section, and its two sub-sections, are adapted

from [1,3] and are interpreted by the authors.

selecting a method with lower delay, complexity, and energy

consumption is desirable, although achieving all of these

criteria simultaneously may not be possible.

III. LINEAR BLOCK CODE AND PROBABILISTIC PROGRAMMING

LANGUAGE

In this section, we provide a brief overview of linear block

codes, specifically focusing on the Hamming code as an

illustrative example. We then proceed to provide a concise

explanation of PPLs, with a particular emphasis on Figaro as a

PPL language. The objective of this section is to demonstrate

how a linear block code can be represented as a PGM and how

Figaro can operate as a PPL.

A. Linear Block Coding2

Linear block codes belong to a category of codes used in

information theory and coding. The term "block" signifies that

the encoder processes multiple input bits together, and the

decoder decodes them as a group. The term "linear" indicates

that the sum of any two valid codewords will also be a valid

codeword. These codes are created using a generator matrix

(𝑮). If the number of input bits in the encoder block is 𝑘 and the

number of output bits is 𝑁, the dimension of the 𝑮 matrix is

𝑘 × 𝑁 (𝑤ℎ𝑒𝑟𝑒 𝑘 < 𝑁). The relationship between the input bits

(𝒅) and the output codeword (𝒄) is represented by (6).

𝒅𝟏×𝒌 ∙ 𝑮𝒌×𝒏 = 𝒄𝟏×𝒏 (6)

Some well-known linear block codes include Hamming,

Reed-Muller, BCH, LDPC, and Reed-Solomon, among others.

Additionally, Convolutional codes are not inherently block

codes, but they can be treated as block codes when they operate

on fixed-length blocks of input data.

Hamming codes are particularly popular and are represented

as [2𝑟 − 1. 2𝑟 − 𝑟. 3]. The expression 2𝑟 − 1 indicates the

number of bits in the decoder output, while 2𝑟 − 𝑟 denotes the

number of input bits. The minimum distance of 3 indicates the

code's ability to detect two bits of error and correct one bit of

error. For example, when 𝑟 = 3, 𝑁 = 7, and 𝑘 = 4. Fig. 2,

illustrates an example of the 𝑮 matrix for 𝑟 = 3, while Fig. 3,

depicts the graphical representation of (6) for this example.

Different linear block codes employ various methods to

generate the 𝑮 matrix.

12 Volume 3, Number 3, November 2023

𝑮 = (

1 0
0 1

0 0
0 0

1 1 1
1 0 1

0 0
0 0

1 0
0 1

1 1 0
0 1 1

)

Fig. 2. 𝑮 matrix for a specific given Hamming (7,4)

Fig. 3. Relationship between input data of an encoder and corresponding

output using the 𝑮 matrix in Fig. 2

B. Probabilistic Programming Language

In many real-world problems, uncertainty plays a significant

role, resulting in the presence of random values and

probabilistic parameters. Probabilistic Reasoning Systems

(PRSs) offer effective approaches to tackle such problems.

When there is a general understanding of the problem, the

components of the problem can be reasoned about using logic.

However, as the complexity of the problem increases and

additional contextual or auxiliary data becomes available, direct

inference using traditional PRS methods becomes challenging

or even infeasible. Fig. 4, depicts the model of a probabilistic

reasoning system, which comprises the following components:

i.Probabilistic Model: This component represents the general

knowledge about a particular situation. It incorporates the

probabilistic relationships and dependencies among variables.

ii.Evidence: refers to the information and observations available

about the situation. It provides input to the reasoning system

and influences the answers to queries.

iii.Queries: Queries represent the questions or specific aspects

we seek to know or infer about the situation.

iv.Inference Algorithm: The inference algorithm utilizes the

probabilistic models and the available evidence to determine

the answers to the queries. It performs the necessary

computations and reasoning steps to make probabilistic

inferences.

Fig. 4. Probabilistic Reasoning System Model [14]

3 The contents of this section are derived from [14].

PRSs offer flexibility and find applications in three key areas

[14]: (1) Predicting future events based on the available

knowledge and evidence, (2) Inferring causes of an event that

enables reasoning about the underlying causes behind

observable phenomena, and (3) Learning from past events to

improve their predictive capabilities for the future.

By incorporating historical data and observations, the system

can refine its probabilistic models and enhance its accuracy.

Two important tools commonly used in PRS are Bayesian

Networks (or belief networks) and Hidden Markov Models

[14].

 1) Figaro

Based on the investigations we have conducted, over 50

probabilistic programming languages have been introduced in

the past decade. The diverse applications of these languages

have led research teams in various fields to develop different

probabilistic programming languages [25]. Major companies

like Google, Amazon, and Microsoft utilize these programs for

various applications such as video recommendations, software

troubleshooting, cyber-attack prediction, and more [14]. Some

notable PPL projects include seismic analysis as a global

seismo-acoustic bulletin [26], cognitive sciences research [27],

malware detection in systems [28], evaluating PPLs for

simulating quantum correlations [15] and using probabilistic

graphical models (PGMs) for solving biological network

problems [29].

Figaro3 is a prominent example of a PPL. Its name is derived

from Wolfgang Amadeus Mozart's opera, "The Marriage of

Figaro." Figaro is implemented as a library in Scala and has

been under development since 2009 by Avi Pfeffer and his

colleagues. It is compatible with IDEs like IntelliJ IDEA.

Practical projects using Figaro include space object

identification, target tracking, malware analysis, and soil

drainage prediction, among others, developed by Pfeffer and his

team.

One of the strengths of PPLs is their ability to model

complex probabilistic graphical problems that are challenging

to solve using conventional methods. As shown in Fig. 4, to

utilize a PPL like Figaro, users need to develop a probabilistic

graphical model in collaboration with domain experts. These

models often take the form of directed graphs with parent-child

nodes or undirected Markov graphs, with or without hidden

layers. Observations are then applied to the model, and one or

more inference algorithms are used to provide answers to

specific queries. Fig. 5 illustrates the steps involved in using

Figaro as a probabilistic programming language.

Figaro employs various elements, with the two main types

being Atomic and Compound. Typically, queries in Figaro

revolve around future event probabilities or causal

relationships.

Figaro, as a probabilistic programming language, can be

executed in two ways: line by line or within a main method.

However, there are certain limitations when constructing

models in Figaro. For instance, some functions have constraints

on the number of inputs or variables they can handle.

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 13

Fig. 5. Figaro Programming Language Model

Figaro incorporates various elements to define probabilistic

models. Some of the important elements are as follows: (1)

Atomic and discrete elements: These include elements like

Select and Flip. For example, Flip (0.4) represents a variable

that, in each program run, has a 0.4 probability of being true and

a 0.6 probability of being false, (2) Atomic and continuous

elements: These include elements like Uniform and Normal.

For instance, Uniform (10,30) represents a variable that

generates a decimal number within the range of [10, 30] with

equal probability, (3) Compound and discrete elements: Figaro

also provides compound elements with discrete values, such as

Select and Flip, and (4) Compound and continuous elements:

Similar to atomic elements, compound elements can also have

continuous distributions. Functions like Uniform and Normal

can be used, where the input is a probabilistic value rather than

a fixed number. For example, a = Uniform (0,1) and b = Flip (a)

define a variable 'a' that generates a decimal number within the

range of [0,1] with equal probability. The value of 'a' then serves

as the input to the function 'b', which outputs true with a

probability equal to 'a'.

Other important elements in Figaro are used to establish

relationships between variables in the probabilistic graph

model. Elements like Chain and Apply are employed to connect

variables in directional graphs and define parent-child

relationships. Conditional Probabilistic Distribution (CPD) and

RichCPD are used to determine the probabilistic relationship

between multiple variables.

Figaro provides two categories of inference algorithms:

factored and sampling, each comprising multiple algorithms.

The Variable Elimination (VE) algorithm is an accurate

factored method that infers based on the moral graph and

systematically eliminates variables. Belief Propagation (BP) is

another algorithm that is faster than VE but less accurate. It

operates using a message passing algorithm. Sampling

Algorithms (SA) utilize sampling theories and central limit

theorems to provide approximate inference with adjustable

accuracy. They are generally faster than factored methods.

Figaro incorporates additional elements, functions, and

methods, which are described in detail in [14].

IV. PROPOSED METHOD: LINEAR BLOCK CODE DECODING BY

PPL

In this section, our objective is to showcase the

transformation of a linear block coding problem into a PGM.

We will also elucidate how the structure of linear block codes

aligns with the framework of probabilistic problems.

Furthermore, we have demonstrated how the Figaro language

can implement this PGM model as a PPL.

Based on Section III and the block diagram of the digital

telecommunications system in Fig. 1, the input data to the

channel encoder block is a bit string [𝑑1 𝑑2 … 𝑑𝑘], where 𝑑𝑖

takes on values of 0 or 1 for 𝑖 ranging from 1 to 𝑘. The output

of this block is denoted as [𝑐1 𝑐2 … 𝑐𝑁], where 𝑐𝑖 takes on values

of 0 or 1 for 𝑖 ranging from 1 to 𝑁. Here, 𝑁 and 𝑘 are integers,

with 𝑘 < 𝑁. For convenience, we consider 𝑑𝑖 and 𝑐𝑖 to be

binary. At this point, we will ignore the modulator and

demodulator blocks. The coded data passes through the

channel, where additive noise is introduced. The receiver string

is represented as [𝑐1̃ 𝑐2̃ … 𝑐𝑁̃], where c𝑖̃ = 𝑐𝑖 + 𝑛𝑖 for 𝑖 ranging

from 1 to 𝑁, and 𝑛𝑖 represents the channel noise.

In the receiver, the bit string [𝑑1̃ 𝑑2̃ … 𝑑𝑘̃] is extracted from

the bit string [𝑐1̃ 𝑐2̃ … 𝑐𝑁̃] using decoding methods. Techniques

that directly utilize the [𝑐1̃ 𝑐2̃ … 𝑐𝑁̃] bit strings are referred to as

soft-decoding methods. On the other hand, hard-decoding

techniques present the received bit string as the correct alphabet

of coded data. Soft-decoding methods often come with higher

costs but offer increased accuracy [1].

One notable feature that distinguishes various coding

methods is their ability to detect and correct errors. By

incorporating modulator and demodulator blocks into this

model, the [𝑐1 𝑐2 … 𝑐𝑁] bit string in the transmitter is sent as a

single-bit or multi-bit. For instance, in BPSK modulation, the

data is modulated and transmitted one by one, while in QPSK

modulation, two bits are modulated and demodulated together

[2].

As discussed in Section II, BER value is utilized to assess

and compare the performance of different coding methods. In

coding, where the [𝑐1 𝑐2 … 𝑐𝑁] bit string is a linear combination

of [𝑑1 𝑑2 … 𝑑𝑘], its probabilistic graphical model can be

represented as shown in Fig. 6.

Fig. 6. Probabilistic graphical model of linear block coding

From the receiver's perspective, the challenge lies in

extracting the [𝑑1̃ 𝑑2̃ … 𝑑𝑘̃] bit string from the received [𝑐1̃

𝑐2̃ … 𝑐𝑁̃] bit string. If 𝑑𝑖̃ = 𝑑𝑖 for all 𝑖, then there are no errors

in the receiver. However, if any 𝑑𝑖̃ does not match its original

value, an error has occurred. Without coding, it would be

impossible to detect such errors if the 𝑑𝑖̃s were to encounter

errors while crossing the channel.

- Importing libraries

- Main loop:

 - Defining and/or declaring probabilistic and non-

probabilistic variables

 - Making probabilistic graphical model via functions and

methods

 - Applying observations and/or conditions and/or

constraints

 - Calling inference algorithm method via libraries

 - Applying inference algorithm to queries

 - Printing or storing results

- End of loop

14 Volume 3, Number 3, November 2023

From the perspective of PRSs and based on Fig. 6, the

problem entails establishing a probabilistic graphical model

between 𝑑𝑖 and c𝑖̃, while also determining the probabilistic

model of the noise. The observed c𝑖̃s serve as the basis for

calculating the probability of 𝑑𝑖 occurrences. In other words,

the problem can be expressed as finding 𝑝(𝑑𝑖|𝒄̃), where 𝒄̃

represents the observed [c1̃ c2̃ … c𝑁̃]. If 𝒅 is a binary variable,

the relationship d𝑖̃ = 𝑅𝑜𝑢𝑛𝑑(𝑝(𝑑𝑖|𝒄̃)) is established.

Based on Fig. 6, and utilizing Fig. 3, the probabilistic

graphical model for the aforementioned example is constructed.

This model encompasses the input bits of the encoder, its

output, channel noise, and the received bits at the receiver. Fig.

7, displays the complete PGM model for this simple Hamming

(7,4) code.

Fig. 7. PGM model of Hamming code in Fig. 3

If we want to explain the proposed methods based on Fig. 4

blocks (section III, part B, cases i to iv) and Fig. 7, it goes as

follows:

i: The probabilistic model is equivalent to the relationship

between the input bits (what the sender has transmitted) and the

received bits. For example, in Fig. 7, 𝑐5̃ at the receiver is a

combination of the first three bits at the sender and then

combined with noise (𝑐5̃ = 𝑑1 + 𝑑2 + 𝑑3 + 𝑛5). The sample

code we have written for this bit in the Figaro language is as

follows:

In this code, the “Select function” chooses a value between

0 and 1 with equal probability. The “Apply” function is used to

combine multiple variables. The “Normal” function represents

the normal distribution, with its input equal to Ebn0 (i.e.

N(0,Ebn0)). In this code, “y1” to “y4” correspond to 𝑑1 to 𝑑4

and “channeli” is equivalent to 𝑛𝑖 and "chri" is equivalent to 𝑐𝑖̃.

This part of the code in Figaro represents the probabilistic

model. For simplicity, we did not include the definition of the

required libraries and some functions in this code. The complete

codes are provided in the supplementary file of this paper.

ii: Our observations are equivalent to the bits received at the

receiver, i.e., the bit string 𝐜. In Figaro language, it is

represented as follows:

In this part of the code, first, a function named “threshold”

is defined, and this function is applied to the variable “chri”.

The variables “ri” are defined to apply the above function to

“chri”. The function “r1.observe” is used to determine what the

observed bit was at the receiver. In this example, if the observed

bit at the receiver is equal to 0, the “false” will be inserted, and

if it is equal to 1, the “true” will be inserted. Please note that the

program can be written in a different way, where instead of

true/false, we can use the values 0 and 1. In that case, some

definitions and functions such as “threshold” will change.

iii, iv: The query we perform involves determining the

probability that the input bit has a specific value, such as 0 or 1,

based on the probabilistic model we constructed in the first part

and the observations we have. If the probability value is greater

than 0.5, the input bit is considered equivalent to the queried

bit, otherwise, its negation will be the answer. See the code

snippet below. The code presented below illustrates three

distinct approaches to inference. Depending on the specific

application, any of these three methods can be utilized. Here,

we have provided all three methods to offer a clearer insight

into Figaro.

In this part, three different reasoning methods are observed.

The first method is the Belief Propagation (BP) method, which

is executed for 50 iterations. In this example, the question asked

is the probability of the input bit being equal to 1. Another

method is the Sampling Algorithm, where we solve the problem

using 50 samples. The last method is Variable Elimination,

which we briefly explained in previous sections.

To provide further explanation, we first formulated a

probabilistic model of the problem. Then, based on the value of

Ebn0, we added noise. Next, we assumed that we observed a bit

stream at the receiver. Based on the observation, the question

asked is the probability of the input bit number 1 (or any) being

 val y1=Select(0.5->1,0.5->0)

 ...

 val y4=Select(0.5->1,0.5->0)

 val p1 = Apply(y1,y2,y3,(a:Int , b:Int , c:Int)=>(a+b+c)%2)

 val p2 = Apply(y1,y3,y4,(a:Int , b:Int , c:Int)=>(a+b+c)%2)

 val p3 = Apply(y1,y2,y4,(a:Int , b:Int , c:Int)=>(a+b+c)%2)

 val Ebn0 = 0.125

 val channel1 = Normal(0,Ebn0)

 ...

 val channel7 = Normal(0,Ebn0)

 val chr1 = Apply(y1,channel1,(a:Int , b:Double)=>a+b)

 ...

 val chr7 = Apply(p3,channel7,(a:Int , b:Double)=>a+b)

 def threshold(d: Double) = d > 0.5

 val r1 = Apply(chr1,threshold)

 ...

 val r7 = Apply(chr7,threshold)

 r1.observe(true or false)

 ...

 r7.observe(true or false)

 //Inference with Belief Propagation

 val iteration_BP = 50

 val algorithm1 = BeliefPropagation(iteration_BP, y1)
 algorithm1.start()

 println("x1 from BP: " + algorithm1.probability(y1, 1))

 algorithm1.kill()
 //Inference with Sampling Algorithm

 val samples = 50

 val salgorithm1 = Importance(samples, y1)
 salgorithm1.start()

 println("x1 from SA : " + salgorithm1.probability(y1, 1))

 salgorithm1.kill()

 //Inference with Variable Elimination
 println("x1 from VE : " + VariableElimination.probability(y1, 1))

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 15

1 (or 0). If this probability is greater than 0.5, the input bit is

considered to be 1 (or 0). If it is less than 0.5, the input bit is

considered to be 0 (or 1). If it is exactly 0.5, we can predefine a

value for it.

As is common in simulating the calculation of BER, the

program is executed for a large number of different inputs to

compute its value.

V. IMPLEMENTATION AND RESULTS

In this section, the applicability and practicality of using PPL

in decoding linear block codes are illustrated through

simulations conducted with Figaro. Several linear block codes,

including Hamming (7,4), Hamming (15,11), LDPC (14,8),

Convolutional (16,5) (or Convolutional (2,1,3)), and Polar

(16,8), are chosen to demonstrate how PPL can decode these

codes with Hamming distances of 3, 3, 3, 6, and 4, respectively.

As previously mentioned, it should be noted that Convolutional

codes are not inherently block codes. However, they can be

considered block codes when they operate on fixed-length

blocks of input data.

In these simulations for the BSC channel, the Hamming (7,4)

code is implemented using three inference methods: Variable

Elimination (VE), Simulated Annealing (SA), and Belief

Propagation (BP), as implemented in Figaro. For the BAWGN

channel with BPSK modulation, all the mentioned codes are

simulated using the same inference methods. The assumptions

made during these simulations are as follows:

- The generator matrix 𝑮 for Hamming (7,4) is considered as

shown in Fig. 2. The 𝑮 matrix for Hamming (15,11) is obtained

from [30] , for LDPC (14,8) and Convolutional (16,5) from [1],

and for Polar (16,8) from [31].

- No modulation is used in the BSC channel, while BPSK

modulation is used in the BAWGN channel. The probability of

error in BPSK modulation is calculated using (1).

- The bits' occurrence probability is assumed to be equal and set

to 0.5 in binary mode (See section IV, “Select” function

descriptions). Additionally, these bits are assumed to be

independent of each other.

- The hard-decoding method is selected for implementation.

We have used IntelliJ IDEA to compile Figaro codes. We

have included the sample codes that we have written in Figaro

language as supplementary files attached to the paper.

Mathematical calculations and the generation of BER diagrams

are performed using Wolfram Mathematica software. As you

know, the horizontal axis of the BER curve represents the SNR,

signal energy, or probability of error, while the vertical axis

indicates the bit error rate.

A. Binary Symmetric Channel

Fig. 8, displays the BER diagram for the probability of bit

error ranging from 0.05 to 0.1 in the BSC channel for Hamming

(7,4) code. The diagram compares four different modes:

decoding using Variable Elimination (VE), decoding using

Belief Propagation (BP) with 25 iterations, decoding not used,

and decoding using Sampling Algorithm (SA) with 250

samples. Based on Fig. 8, it is evident that the use of Hamming

decoding with VE and BP methods in PPL does not outperform

the case where decoding is not utilized.

Fig. 8. BER diagram for comparison between the three inference methods in

BSC channel for Hamming (7,4) decoding and uncoded data

The results obtained from the PPL methods align with the

previous methods [32]. However, it is important to note that the

BP method exhibits a significant advantage when the bit error

exceeds 0.03. On the other hand, it is highly inefficient for

values lower than 0.03.

Fig. 9, showcases the impact of changing the number of

iterations on the BER value in the BP method, with a channel

error probability of 0.04. Table I, which corresponds to Fig. 9,

reveals that increasing the iteration count in the BP method

from 5 to 30 leads to a decrease in the BER value from 0.2 to

0.014. This implies that higher iteration numbers in the BP

method generally contribute to enhanced coding accuracy.

Although Hamming (7,4) is one of the simplest codes, and there

exist very simple and low-complexity methods for decoding it,

we have used this simple code to demonstrate the impact of

various inference parameters used in PRS models.

Fig. 9. The effect of increasing iteration in the BP algorithm for BSC

channel for Hamming (7,4) decoding per probability of error 0.04

TABLE I

Data Related to Fig. 9

BER Iterations

0.216231 5

0.14722 10

0.11968 15

0.08565 20

0.03076 25

0.01459 30

16 Volume 3, Number 3, November 2023

B. AWGN Channel

In order to demonstrate the performance of using PPL in

decoding linear block codes, simulations are conducted in the

AWGN channel with BPSK modulation. The SA inference

algorithm is employed, and the BER is calculated for different

sampling values and compared with the exact value obtained

from (1). Fig. 10, provides a comparison between the exact

value and the SA method for two sampling values, 2.5 × 106

and 105. It is evident that increasing the number of samples

leads to improved accuracy. Furthermore, it demonstrates that

PPL is capable of accurately calculating the BER for linear

block coding with very good precision.

Fig. 10. Comparison of BER in AWGN channel with BPSK modulation by

SA method with 2.5 × 106 samples (blue), 105 samples (magenta), and exact

value (red) for uncoded data

Fig. 11, illustrates the BER diagram in the AWGN channel

with BPSK modulation for various decoding schemes, along

with a comparison with existing methods. The considered

decoding schemes are uncoded data transmission, Hamming

(7,4) with VE inference (with an Abstraction value of 500) and

SA method (with 2000 samples), and Hamming (15,11) with

VE inference. The results are compared with (7,4) for the VE

method (with an Abstraction value of 500) and the SA method

(with 2000 samples), compared with [33,34] and [30],

respectively. The comparison demonstrates that the proposed

method yields acceptable results, with the BER values in the

proposed method and existing methods being close to each other.

Fig. 12, presents a comparison of different decoding

schemes with their common decoding methods in the AWGN

channel with BPSK modulation. The inference method

employed in this case is VE in PPL. The considered decoding

schemes are uncoded data transmission, LDPC (14,8),

Convolutional (16,5), and Polar (16,8). The results are

compared with [1], [1], and [31], respectively. The comparison

shows that the proposed method provides comparable results,

with the BER values in the proposed method and existing

methods being close to each other (indicated by the dashed lines).

As evident from Fig. 10 to 12, our proposed method does not

demonstrate superiority in terms of BER compared to the

existing methods. We conducted these simulations to illustrate

that while using PPL alongside its potential advantages, it can

still provide similar results to the existing methods. This can

allow us to confidently utilize this method.

Fig. 13, demonstrates the effect of the number of samples on

the BER in the SA method. The figure shows that as the number

of samples increases, the BER value decreases. These values

are simulated for an Eb/N0 value of 4dB. According to the

figure, as the number of samples increases from 10 to 1500, the

BER value decreases from 0.022 to 0.013.

Finally, Fig. 14, displays a comparison involving the BP

method with 10 and 30 iterations, as well as uncoded

transmission for Hamming (7,4). The figure highlights that

neither of these two modes shows an advantage over uncoded

transmission, but increasing the number of iterations leads to

improved results. While increasing the number of iterations

beyond 50 brings the performance of this inference method

closer to conventional methods, iterations in the range of 10 to

30 are typical in traditional methods [35,36]. Furthermore, this

result indicates that in addition to selecting an appropriate

inference method and determining its parameters, different

decoding methods - such as the one we have proposed - can

yield unacceptable responses compared to other methods.

Fig. 11. Comparison of BER for some decoding methods with uncoded (BPSK modulation and AWGN channel). Dashed lines are placed for existing methods,
also, "Hard" stands for existing

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 17

Fig. 12. The BER Comparison; Proposed method (thick lines) with existing (dashed lines); Decoding methods: LDPC(14,8), Polar(16,8), Convolutional(16,5); BPSK
modulation and AWGN channel); Ex stands for Existing method.

Fig. 13. The effect of the SA method sampling number in BER for Hamming (7,4) decoding (Eb/N0 = 4dB)

Fig. 14. The effect of the number of iterations of the BP method on the BER for Hamming (7,4)

18 Volume 3, Number 3, November 2023

VI. ADVANTAGES AND DISADVANTAGES

In the preceding section, we conducted an implementation

for decoding linear block codes utilizing Figaro and showcased

that employing PPLs can yield comparable outcomes to

existing methods. In this section, we will delve into the

advantages and disadvantages of employing PPL for decoding.

By considering the benefits of this approach, we strongly

believe that the utilization of PPL can be justified. Furthermore,

with the ongoing advancement of these languages in the future,

they have the potential to garner increased attention and

recognition. Finally, we present both advantages and

disadvantages in Table II.

A. Advantages

Some advantages of the proposed method are described

below.

 1) Utilization of different inference methods

PPL languages offer support for various inference methods,

such as VE, BP, SA, and others. Each of these methods has

distinct advantages in different applications. For instance, SA

methods tend to be more effective in graph structures

containing loops, while both VE and BP methods exhibit higher

accuracy in loop-free graphs. Additionally, as discussed in the

previous section, different inference methods perform

differently under varying channel conditions. Comparatively,

existing decoding methods typically employ one or two

optimized and fixed methods at the receiver [9]. Therefore,

incorporating PPL in the receiver enables the selection of

decoding methods based on prevailing conditions. Further

explanation is that since the proposed method is based on

probabilistic programming, we can write a separate code for

each method. For example, for a specific decoding technique,

after defining the probabilistic model and variables, we can

utilize various inference methods. Each method is written in a

separate code, and the appropriate program will be selected

based on different conditions.

 2) The ability to choose between hard decoding or soft

decoding methods based on channel conditions

Conventional methods often implement either soft-decoding

or hard-decoding exclusively [10]. Soft-decoding methods

offer greater accuracy and lower error probabilities than hard-

decoding methods under similar channel conditions, albeit at

the cost of increased computational complexity and latency.

Using PPL can enable us to have the freedom to choose between

these two methods. Since this approach is based on

programming, we can write programs for both methods and,

based on the channel conditions, use one of them. For example,

when we have a higher SNR value, we can use the hard method,

and for lower values, we can use the soft method.

 3) Implement a wide range of coding methods

As demonstrated in Section IV, PPL can implement various

decoding techniques, including linear block codes, that can be

modeled as probabilistic graphical models. Traditional

decoding methods typically focus on implementing one or two

decoding methods at the receiver [9,11]. Consequently,

communication between the transmitter and the receiver

adheres to a specific predetermined standard, utilizing a limited

set of coding methods. By incorporating PPL, a receiver can

execute multiple decoding methods based on the prevailing

conditions. This means that different transmitters can utilize

different coding methods to send data, and the receiver can

decode the received data by invoking the appropriate program

without requiring any hardware modifications. In other words,

using PPL allows us to have a wide range of linear block codes

along with various inference methods at the receiver side. For

each coding method, there exists a separate program, and when

that coding method is employed, the corresponding program

will be called and executed. For instance, weaker coding can be

used when the channel is in good condition, while stronger

codes can be employed when the channel conditions are

unfavorable, potentially resulting in energy savings.

 4) Ability to set inference algorithm parameters

In traditional designs, decoding methods typically have fixed

parameters that are predetermined before implementation.

However, in PPL methods, the parameters of the inference

algorithm can be adjusted. For instance, in the BP method,

parameters such as the number of iterations and execution time

can be fine-tuned. Similarly, in the SA method, the number of

samples can be adjusted. The adjustability of these parameters

enhances the flexibility of the receiver, allowing it to adapt to

different channel conditions. For example, in poorer channel

conditions, the number of iterations or samples can be

increased, while in better conditions, these parameters can be

decreased.

 5) Use machine learning methods to optimize parameter

setting

In the previous paragraphs, we discussed the adjustability of

PPL parameters such as the number of iterations, the number of

samples, the choice between soft or hard decoding, coding type,

inference algorithm type, and so on. We also mentioned the

ability to set appropriate parameters based on channel

conditions. In the receiver, channel information is continuously

calculated. By employing machine learning methods and

utilizing the information on various channel conditions,

algorithm parameters can be optimized. This allows for the

selection of the best parameters based on the prevailing

conditions. Some research and activities in the field of decoding

involve artificial intelligence and machine learning [17,37–41].

Based on the channel conditions and the relationship between

parameters, a probabilistic graphical model can be created to

determine optimal parameter settings. This generates a

probabilistic graphical model problem that can be inferred

using PPL. Additionally, methods such as clustering or

classification can be employed to examine channel conditions

and allocate suitable parameters. Since this approach is based

on probabilistic programming, it is capable of executing

machine learning-based methods alongside it.

 6) A tool for estimating channel condition

Various methods exist for estimating channel state

information. For example, in [42] a new multi-stage detector for

robust signal and spectrum sensing in cognitive radio is

introduced, and in [43], authors propose the modified Newton's

(MN)-based Improved Animal Migration Optimization

(IAMO) algorithm in MIMO-OFDM systems for channel

estimation. In wireless telecommunications systems such as

cooperative computation offloading in mobile edge computing

systems, which often employ powerful servers without energy

limitations [44], PPL can serve as an effective tool for

estimating different channel conditions in various operational

modes, regardless of its involvement in decoding. In this

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 19

TABLE II.

Comparison of Advantages and Disadvantages of the Proposed Method to the Other Existing
No Parameter Proposed Method Other Existing Methods

1 Multi inference method Yes Up to 2 methods

2 The ability to choose between hard decoding or soft decoding methods based on

channel conditions

Yes Only soft or only hard method

or hybrid method

3 Various decoding method implementation Yes Up to 2 methods

4 Setting inference algorithm parameters Yes Use only default values

5 Use alongside machine learning Yes Possible not yet used

6 Estimating channel condition Yes Only with preambles

7 Adjusting the initial value of probability of bits Yes Usually, equivalent prob.

8 Large generating matrix (𝑮) Not yet able Some methods are able

9 Online use Poor Optimized

10 Energy consumption More than existing Usually optimized

 scenario, the receiver (Access Point or Base Station) receives

a pilot signal at specified intervals, applies various decoding

methods to it, and sends the results to the transmitter via the

downlink. Subsequently, the transmitter can utilize these results

to select the appropriate decoding method.

 7) Adjust the initial probability value of bit or symbol

occurrence

PPL provides the capability to determine the initial

probability value for variables. In telecommunications,

different symbols have varying probabilities of occurrence.

Traditional decoding methods often assume equal probability

for all symbols. However, as the received data in the receiver is

constantly changing, more accurate probabilities of symbol

occurrences can be obtained by employing statistical methods

and storing relevant information. The accuracy of initial

probabilities for variables directly impacts the effectiveness of

inference algorithms. Consequently, the more accurate the

initial probabilities of the variables, the more accurate the

inference algorithms will be. For further explanation of setting

initial values, please refer to the code provided in section IV. In

that code, functions like "Select" can be adjusted with an initial

value. In that code, the probability values of 0 and 1 are

considered equal. In applications where these values are not

equal, the use of PPL can be employed to compute and initialize

each of the bits.

B. Disadvantages

The proposed method has some limitations, which are

explained below:

 1) Limitations in the development of probabilistic graphs

PPLs, such as Figaro, have limitations when it comes to

developing probabilistic graphs. For instance, in Figaro,

methods like Apply or Chain have a maximum limit of five

inputs [14]. As a result, analyzing graphs with large parent-

child relationships (i.e., a large 𝑮 matrix) becomes challenging.

To address this, nested loops must be used, which can slow

down the compile speed.

 2) Compiling speed

The compiling speed of programs in PPLs depends on the

skills of the programmer and the optimized code structures.

With proficient programming and optimized code, programs

can be compiled at a high speed. However, in channel coding

applications in telecommunication systems, we have observed

that the speed of PPL programs is slower compared to common

methods such as FPGA or ASIC [5,24]. This can limit their

usability in certain online applications that require processing

times within the range of 0.5 to 50 milliseconds. For example,

in the simulations we conducted, the compiling speed for

Hamming (15,11) decoding using the SA inference method

with 2000 samples is approximately 3 milliseconds. This

processing was performed using an Intel Core i5 CPU with a

frequency of 2.5 GHz and 6 GB of RAM. This compiling speed

is roughly equivalent to 4 Kbps.

 3) Requirement for powerful servers in high-speed data

transfer applications

In high-speed applications involving data transfer, PPL data

decoding necessitates the use of powerful servers. However,

due to the limitations of mobile phones, it is currently not

feasible to employ this method on the downlink side, as mobile

devices may lack the necessary computational capabilities to

handle the demands of PPL-based decoding.

 4) Higher energy consumption

Despite the mentioned benefits of PPLs, they consume more

energy in the decoding of communication systems compared to

existing methods. Consequently, their use may not be cost-

effective in scenarios where there are energy constraints, such

as in wireless sensor networks [45]. This can be attributed to the

fact that current methods often involve the design of optimal

hardware circuits, which are more energy-efficient in practical

applications.

Please note that these disadvantages should be considered

within the context of the specific implementation and

application of PPLs. Ongoing research and development efforts

20 Volume 3, Number 3, November 2023

aim to address these limitations and enhance the efficiency and

practicality of PPLs in various communication fields.

C. The Summary of Advantages and Disadvantages

Comparison to the Other Existing Methods

Table II shows the summary of the advantages and

disadvantages of the proposed method compared with the other

existing methods.

VII. CONCLUSION AND FUTURE WORKS

This paper explores the use of probabilistic programming

languages (PPL) for channel data decoding in

telecommunications, specifically for linear block coding. It

describes how a linear block coding problem can be

transformed into a probabilistic graphical model, and how PPL

can be utilized for decoding, as illustrated through simulations

using the Figaro programming language. Simulations have

shown that with skilled programming, the proposed method can

achieve results similar to existing decoding methods. The

proposed PPL-based decoding method is shown to be able to

dynamically adjust parameters based on channel conditions,

offer flexible decoding approaches, and leverage machine

learning techniques, making it well-suited for scenarios without

energy or real-time constraints. The paper also suggests future

research to further enhance PPL-based probabilistic graphical

models and apply them to wireless channel estimation.

REFERENCES

[1] Lin S, Costello DJ (2004) Error Control Coding: Fundamentals and

Applications, Pearson-Prentice Hall.
[2] Proakis J, Salehi M (2007) Digital Communications, 5th Edition,

McGraw-Hill Science/Engineering/Math.

[3] MacKay DJC (2003) Information theory, inference and learning
algorithms, Cambridge university press.

[4] Ferraz O, Subramaniyan S, Chinthala R, Andrade J, Cavallaro JR, Nandy

SK, Silva V, Zhang X, Purnaprajna M, Falcao G (2022) A Survey on High-
Throughput Non-Binary LDPC Decoders: ASIC, FPGA, and GPU

Architectures. IEEE Commun Surv Tutorials 24, pp. 524–556.

[5] Hasan FS, Mosleh MF, Abdulhameed AH (2021) FPGA implementation
of LDPC soft-decision decoders based DCSK for spread spectrum applications.

Int J Electr Comput Eng 11, pp. 4794–4809.

[6] Kumar N, Kedia D, Purohit G (2023) A review of channel coding
schemes in the 5G standard. Telecommun Syst 83, pp. 423–448.

[7] Ali MM, Hashim SJ, Chaudhary MA, Ferré G, Rokhani FZ, Ahmad Z

(2023) A Reviewing Approach to Analyze the Advancements of Error
Detection and Correction Codes in Channel Coding With Emphasis on LPWAN

and IoT Systems. IEEE Access 11, pp. 127077–127097.
[8] Sunny J, Ameenudeen PE, Kumar RH (2022) Design of Machine

learning based Decoding Algorithms for Codes on Graph. In Proceedings -

2022 IEEE Silchar Subsection Conference, SILCON 2022 IEEE, pp. pp. pp. 1–
7.

[9] Luo FL, Zhang CJ (2017) Signal processing for 5G: Algorithms and

implementations, John Wiley & Sons, Ltd, Chichester, UK.
[10] Wang J, Tang C, Huang H, Wang H, Li J (2021) Blind identification of

convolutional codes based on deep learning. Digit Signal Process A Rev J 115,

pp. 103086.
[11] Li S, Zhou J, Huang Z, Hu X (2021) Recognition of error correcting

codes based on CNN with block mechanism and embedding. Digit Signal

Process A Rev J 111, pp. 102986.
[12] Guo J, Cao C, Shi D, Chen J, Zhang S, Huo X, Kong D, Li J, Tian Y,

Guo M (2021) Matching Pursuit Algorithm for Decoding of Binary LDPC

Codes. Wirel Commun Mob Comput 2021, pp. 1–5.
[13] Singels R (2016) The application of Probabilistic Graphical Models to

Raptor codes over Binary Input Memoryless Symmetric Channel models.

[14] Ścibior A, Ghahramani Z, Gordon AD (2016) Practical probabilistic
programming with monads, Manning Publications Co.

[15] Obeid AK, Bruza PD, Wittek P (2019) Evaluating probabilistic
programming languages for simulating quantum correlations. PLoS One 14, pp.

e0208555.

[16] Yadav A, Kakde S, Khobragade A, Bhoyar D, Kamble S (2018) LDPC
Decoder ’ s Error Performance over AWGN Channel using. Int J pure Appl

Math 118, pp. 3875–3879.

[17] Ly A, Yao YD (2021) A review of deep learning in 5G research: Channel
coding, massive MIMO, multiple access, resource allocation, and network

security. IEEE Open J Commun Soc 2, pp. 396–408.

[18] Carlson AB, Crilly PB, Rutledge JC (2002) Communication systems : an
introduction to signals and noise in electrical communication, McGraw-Hill.

[19] Kumar RD, Vishvaksenan KS (2020) Interference cancellation in

cognitive radio-based MC-CDMA system using pre-coding technique. J
Supercomput 76, pp. 1–15.

[20] Goldsmith A (2005) Wireless communications, Cambridge University

Press.
[21] Tanenbaum AS, Wetherall DJ (2013) Computer Networks, Pearson.

[22] Fanari L, Iradier E, Bilbao I, Cabrera R, Montalban J, Angueira P, Seijo

O, Val I (2022) A Survey on FEC Techniques for Industrial Wireless
Communications. IEEE Open J Ind Electron Soc 3, pp. 674–699.

[23] Tomlinson M, Tjhai CJ, Ambroze MA, Ahmed M, Jibril M (2017) Reed–

Solomon Codes and Binary Transmission. In, Tomlinson M, Tjhai CJ, Ambroze
MA, Ahmed M, Jibril M, eds. Springer International Publishing, Cham, pp. pp.

pp. 167–179.

[24] Fanari L, Iradier E, Bilbao I, Cabrera R, Montalban J, Angueira P (2021)
Comparison between different channel coding techniques for ieee 802.11be

within factory automation scenarios. Sensors 21, pp. 7209.
[25] Krapu C, Borsuk M (2019) Probabilistic programming: A review for

environmental modellers. Environ Model Softw 114, pp. 40–48.

[26] Le Bras R, Arora N, Kushida N, Mialle P, Bondár I, Tomuta E, Alamneh
FK, Feitio P, Villarroel M, Vera B, Sudakov A, Laban S, Nippress S, Bowers

D, Russell S, Taylor T (2021) NET-VISA from Cradle to Adulthood. A

Machine-Learning Tool for Seismo-Acoustic Automatic Association. Pure
Appl Geophys 178, pp. 2437–2458.

[27] Lake BM, Salakhutdinov R, Tenenbaum JB (2015) Human-level concept

learning through probabilistic program induction.
[28] Ruttenberg B, Kellogg L, Pfeffer A (2016) Probabilistic Programming

for Malware Analysis. CoRR abs/1603.0,.

[29] Farnoudkia H, Purutçuoglu V (2019) Copula Gaussian graphical
modeling of biological networks and Bayesian inference of model parameters.

Sci Iran 26, pp. 2495–2505.

[30] Alabady SA, Mohd Salleh MF, Al-Turjman F (2018) LCPC error
correction code for IoT applications. Sustain Cities Soc 42, pp. 663–673.

[31] Koike-Akino T, Wang Y (2021) Protograph-Based Design for QC Polar

Codes. In IEEE International Symposium on Information Theory - Proceedings
IEEE, pp. pp. pp. 593–598.

[32] Sadlier RJ, Humble TS (2016) Superdense Coding Interleaved with

Forward Error Correction. Quantum Meas Quantum Metrol 3,.
[33] Sarnin SS, Kadri N, Mozi AM, Wahab NA, Naim NF (2010)

Performance analysis of BPSK and QPSK using error correcting Code through

AWGN. ICNIT 2010 - 2010 Int Conf Netw Inf Technol pp. 178–182.
[34] Giordano AA, Levesque AH (2015) BER performance of BPSK in

AWGN with a Hamming code. In Modeling of digital communications systems

using Simulink Wiley, pp. pp. pp. 175–180.
[35] Karimi-Lenji A, Houshmand M, Zarmehi F (2017) A high-performance

belief propagation decoding algorithm for codes with short cycles. Int J

Commun Syst 30, pp. 1–8.
[36] Old J, Rispler M (2023) Generalized Belief Propagation Algorithms for

Decoding of Surface Codes. Quantum 7, pp. 1037.

[37] Habib S, Mitchell DGM (2023) Reinforcement Learning for Sequential
Decoding of Generalized LDPC Codes. In 2023 12th International Symposium

on Topics in Coding (ISTC) IEEE, pp. pp. pp. 1–5.

[38] Fang M (2023) An Improved Min-Sum Polar Code Decoding Algorithm.
In 2023 3rd Asia-Pacific Conference on Communications Technology and

Computer Science (ACCTCS) IEEE, pp. pp. pp. 655–658.

[39] Huang L, Zhang H, Li R, Ge Y, Wang J (2020) AI Coding: Learning to
Construct Error Correction Codes. IEEE Trans Commun 68, pp. 26–39.

[40] Qin Z, Fei Z, Huang J, Wang Y, Xiao M, Yuan J (2023) Reinforcement-

Learning-Based Overhead Reduction for Online Fountain Codes With Limited
Feedback. IEEE Trans Commun 71, pp. 3977–3991.

[41] Song D, Ren J, Wang L, Chen G (2022) Designing a Common DP-LDPC

Code Pair for Variable On-Body Channels. IEEE Trans Wirel Commun 21, pp.
9596–9609.

Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE) 21

[42] Jeevangi S, Jawaligi S, Patil V (2022) Deep Learning-based SNR
Estimation for Multistage Spectrum Sensing in Cognitive Radio Networks. J

Telecommun Inf Technol.

[43] Venkateswarlu C, Rao NV (2022) Optimal channel estimation and
interference cancellation in MIMO-OFDM system using MN-based improved

AMO model. J Supercomput 78, pp. 3402–3424.

[44] Khazali A, Bozorgchenani A, Tarchi D, Shayesteh MG, Kalbkhani H
(2023) Joint Task Assignment, Power Allocation and Node Grouping for

Cooperative Computing in NOMA-mmWave Mobile Edge Computing. IEEE

Access 11, pp. 93664–93678.
[45] Naik C (2022) Computational Intelligence Algorithms For Energy

Optimization Problems In Wireless Sensor Networks.

