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Abstract—This paper proposes a system for transmitting and 
receiving encrypted state information via a communication 
channel in the presence of noise and interference. The proposed 
system uses a chaotic signal generated by a Lorentz oscillator to 
encrypt the state information, which is then transmitted through 
the communication channel. At the receiver end, the received 
signal is decrypted using a similar key generated by a forced 
Lorentz oscillator. The accurate determination of the force signal 
is essential for synchronizing chaotic signals, and this paper 
proposes the use of reinforcement deep learning agents to train 
and determine the force signal. The proposed communication 
scheme involves the use of a state estimator, a master chaotic 
oscillator, two slave oscillators, and two RL agents. The proposed 
system was simulated using MATLAB Simulink, and the results 
show that the errors exhibit a repetitive nature, with low and high 
values corresponding to the input signal. The proposed system 
provides a reliable and secure system for transmitting sensitive 
information over communication channels. 

Index Terms- Chaotic Communication System, Synchronize- 
tion, Reinforcement Learning. 

I.  INTRODUCTION 

smart grid is an advanced electrical power system that 

uses modern communication and information 

technologies to improve the efficiency, reliability, and 

sustainability of electricity generation, distribution, and 

consumption. The traditional power grid was designed to 

deliver electricity from large centralized power plants to 

consumers through a one-way flow of electricity. However, 

with the increasing penetration of renewable energy sources, 

electric vehicles, and energy storage systems, the power grid 

needs to be more flexible, resilient, and interactive to 

accommodate these changes. A smart grid integrates various 

technologies such as sensors, meters, automation, and control 

systems to monitor and manage the flow of electricity in real 

time. It also enables two-way communication between the 

utility and the customers, allowing them to actively participate 

in energy management and conservation. The smart grid can 

optimize the use of renewable energy, reduce carbon emissions, 

enhance grid security, and improve the overall quality of 

electricity service. However, the implementation of a smart grid 

requires significant investments in infrastructure, technology, 

and policy frameworks [1]–[5]. 

State estimation is a crucial process in a smart grid that 

estimates the state variables of the power system based on 

measurements obtained from various sensors and meters. In 

traditional grids, state estimation is performed using a 

centralized system, but in a smart grid, it is distributed, 
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which reduces communication overhead and improves 

scalability and reliability. Advanced Metering Infrastructure 

(AMI) and Phasor Measurement Units (PMUs) are two novel 

structures used for state estimation in smart grids. AMI 

provides real-time data on energy consumption and production, 

enabling the utility to monitor energy usage patterns and 

optimize energy distribution. PMUs measure the voltage, 

current, and phase angle of the power system at high speeds, 

providing accurate and synchronized measurements for real-

time monitoring and control. Smart grids require more 

advanced state estimation techniques and communication 

technologies to enable real-time monitoring and control of 

the power system. The use of AMI and PMUs in smart grids 

enables more accurate and reliable state estimation, improving 

the overall performance and efficiency of the power system 

[6]–[9]. 

Communication protocols are essential for the 

implementation of a smart grid as they enable the exchange of 

information between different components of the power 

system. The communication protocol used in a smart grid 

should be reliable, re-silent, and secure. Smart grid 

applications require high-speed data transmission to enable 

real-time monitoring and control of the power system. The 

communication protocol should also be scalable, flexible, and 

cost-effective to accommodate the growing number of devices 

and sensors in the power system and support different types 

of data and applications [10]. 

The implementation of smart grid communication systems 

introduces several security issues that are not present in 

traditional networks. Smart grids are complex systems that 

rely on a large number of interconnected devices and systems, 

which makes them vulnerable to cyber-attacks. Unauthorized 

access, data integrity, denial of service attacks, malware and 

viruses, and physical security are some of the security issues 

that arise in the implementation of smart grid communication 

systems. Smart grid communication systems require robust 

security mechanisms to protect against cyber threats and 

ensure the confidentiality, integrity, and availability of data 

[11], [12]. 

Symmetric protocols, such as Advanced Encryption 

Standard (AES), are commonly used in smart grid 

communication networks for encrypting data that is 

transmitted between devices. Asymmetric protocols, such as 

RSA, are also used in smart grid communication networks for 

tasks such as key exchange and digital signatures. 
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Asymmetric protocols are generally considered more secure 

than symmetric protocols, but they are also more 

computationally intensive and slower. 

Therefore, a combination of symmetric and asymmetric 

pro-tools is often used in smart grid communication networks 

to provide a balance between security and efficiency [13], 

[14]. The use of chaotic signals in smart grid communication 

networks can enhance security by generating unpredictable 

and difficult-to-reproduce cryptographic keys. Chaotic 

signals can protect against various types of attacks, ensuring 

the confidentiality, integrity, and availability of data 

transmitted over the smart grid communication network. The 

use of chaotic signals can also improve the efficiency and 

reliability of the network by optimizing the allocation of 

resources and reducing interference and noise. This approach 

can provide a range of benefits for both security and 

performance, making it a promising approach for the reliable 

and secure operation of the smart grid [15]. 

Chaotic signals are complex, irregular, and unpredictable 

signals. Synchronization of chaotic signals involves making 

two or more chaotic signals behave identically, which is 

necessary for applications such as secure communication, 

chaos-based cryptography, and control of chaotic systems. The 

possibility of synchronization depends on the type of chaotic 

system and the synchronization method used. The condition for 

synchronization is that the difference between the chaotic 

signals’ states should converge to zero asymptotically. The 

method for synchronization involves designing a feedback 

control system that adjusts the parameters of the chaotic system 

to match the parameters of the reference system. Various 

methods, such as the Pyragas method [16], the Ott- Grebogi-

Yorke method [17], or the adaptive control method, can be 

used to design the feedback control system [18]. 

The paper is divided into four sections: introduction, 

problem formulation, results and discussion, and conclusion. 

In the introduction, a brief literature survey on strategies for 

secure communication in smart grids is presented. The problem 

formulation section outlines the proposed communication 

scheme. The results and discussion section presents the search 

findings and analyzes their implications. Finally, the 

conclusion of the paper is provided in section IV. 

II.  PROBLEM FORMULATION 

In modern communication systems, the transmission and 

reception of encrypted state information via communication 

channels is a common practice. The encrypted state informa- 

tion is then properly decrypted to further process the data, such 

as bad data detection, operational decision making, and other 

related decisions. However, the transmission and reception of 

encrypted state information can be challenging due to the 

presence of noise and interference in the communication 

channel. 

To address this challenge, a system is proposed that can 

effectively transmit and receive encrypted state information 

via a communication channel. Fig. 1 depicts an overview of 

the proposed system. The system consists of an encryption 

module, a transmission module, a reception module, and 

a decryption module. The encryption module encrypts the state 

information using a secure encryption algorithm. The 

transmission module transmits the encrypted state information 

via a communication channel. The reception module receives 

the transmitted encrypted state information and performs error 

correction to remove any noise or interference in the 

communication channel. The decryption module then decrypts 

the received encrypted state information to obtain the original 

state information. 

Once the original state information is obtained, it can be 

further processed for various purposes, such as bad data 

detection, operational decision-making, and other related 

decisions. The proposed system can effectively transmit and 

receive encrypted state information, even in the presence of 

noise and interference in the communication channel. This 

makes it a reliable and secure system for transmitting sensitive 

information over communication channels. States from the 

smart grid are digitized and encrypted by a time-varying key. 

Keys are generated via free running Lorentz chaotic y 

parameter. The Lorentz oscillator is described by the 

following set of differential equations [19]: 
 

(1) ( )
dx

y x
dt

= − 

(2) ( )
dy

x z y
dt

= − − 

(3) dz
xy y

dt
= − 

 

After 8-bit digitization of the oscillator signal, it is 

transmitted through an ideal communication channel. The 

received signal is decrypted using a similar key, which is 

generated by the forced Lorentz oscillator with the same 

parameters, i.e. σ, ρ and β, as those at the transmitter. The 

forced oscillator obeys the same coupled differential 

equations, only that y is forced by an external time-varying 

parameter,  i.e. u [20] 
 

(4)             

 
( )

dy
x z y u

dt
= − − + 

 

To properly retrieve the signal y same as the free-running 

oscillator in the transmitter, and consequently generate the key 

from the received signal. This process allows for the original 

signal to be achieved for further processing. The accurate 

determination of the force signal is essential for synchronizing 

chaotic signals. This paper proposes the use of reinforcement 

deep learning agents to train and determine the force signal. 

Reinforcement learning (RL) is a type of machine learning 

where an agent learns to make decisions by interacting with 

an environment. The agent receives feedback in the form of 

rewards or penalties for its actions, and its goal is to maximize 

the cumulative reward over time. 
In RL, the agent learns a policy, which is a mapping from 

states to actions. The policy determines what action the 

agent takes in each state. The goal of the agent is to learn 

a policy that maximizes the expected cumulative reward. 
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The value of a state is the expected cumulative reward 

starting from that state and following the current policy. 

The policy iteration algorithm alternates between policy 

evaluation and policy improvement. 
 

  

Fig. 1.  Overview of the proposed system for transmitting and receiving encrypted state information via a communication channel. 

 

In policy evaluation, the value function is computed for the 

current policy. In policy improvement, the policy is updated 

to be greedy concerning the value function. The Bellman 

equation is a recursive equation that expresses the value of a 

state in terms of the values of its successor states: 

𝑉(𝑠) = max [𝑅(𝑠, 𝑎) + 𝛾∑𝑃(𝑠′|𝑠, 𝑎)𝑉(𝑠′)

𝑠′

]

𝑎

 
(6) 

where V (s) is the value of state s, R(s, a) is the reward 

for taking action a in state s, P (s′ s, a) is the probability of 

transitioning to state s′ from state s after taking action a, 
and 

γ is a discount factor that determines the importance of 

future rewards [21]. 

Q-learning is a popular RL algorithm that learns the 

optimal action-value function, Q(s, a), which is the expected 

cumulative reward starting from state s, taking action a, and 
following the optimal policy thereafter. The Q-learning 
update rule is: 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾max𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 
 

  (7) 

where r is the reward for taking action a in state s, α is 

the learning rate, and s′ is the next state [22]–[24]. 

In this paper, the states are determined using the error, 

error derivative, integral of error, and received signal y. The 

reward is determined based on the absolute values of the error 

and force. 

The actor-critic model is a deep reinforcement learning 

approach that combines value-based and policy-based 

methods. The actor learns a policy that maps states to 

actions, while the critic learns the value function to evaluate 

the policy and provide feedback to the actor. 

Q-learning, a value-based RL algorithm, is used in this 

paper to train the critic. A neural network is utilized to 

implement both the critic and actor, with the critic estimating 

Q-values using the state as input and the actor outputting 

action probabilities based on the state. The actor and critic 

are trained simultaneously using the Q-learning algorithm. 

Our proposed communication scheme is designed for 

base- band 2-level communication, where the receiver must 

be able to distinguish between the levels. To achieve this, we 

have composed a system consisting of a state estimator, a 

master chaotic oscillator, 2 slave oscillators, and 2 RL 

agents. 

To digitize the critical state information and master 

informa- tion, we use an 8-bit A/D block. The state 

information is then encrypted using the XOR logic gate from 

the master oscillator and transmitted through the 

communication channel. 

At the receiver end, the received signal is applied 

twice to two XOR gates with the 0 and 1 logics as the 

other gate. The output from both gates is differentiated 

from two master oscillators. The state equation from both 

oscillators and differentiators are fed to RL agents to derive 

the proper forces. Our anticipated outcome is that the 

oscillator, by the proper input of the logic, is well-

synchronized, and by measuring the error, the proper signal 

can be retrieved. Fig. 2 illustrates the communication 

scheme we propose. 

While our proposed communication scheme involves 

the use of two RL agents in the receiver end, it is not 

necessary to train both agents separately. Instead, we can 

train one agent and then copy the results to the other 
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agent. This approach saves time and effort, as training 

RL agents can be a cumbersome task.  

By copying the results from one agent to the other, 

we ensure that both agents have the same knowledge 

and expe- rience. This allows them to work together 

more efficiently and effectively. Additionally, it reduces 

the risk of errors or inconsistencies that may arise from 

training both agents separately. 
Using a single trained RL agent and copying the results to 

the other agent is a practical and efficient approach that can 

simplify the implementation of our proposed communication 

scheme. 

 

 
 

Fig. 2. Communication scheme composed of state estimator, master chaotic oscillator, 2 slave oscillators, and 2 RL agents. 

 

III.  RESULTS AND DISCUSSION 

The proposed communication scheme was simulated 

using MATLAB Simulink, with the reinforcement learning 

toolbox of MATLAB used to implement and train the RL 

agent. To simplify the analysis, a normalized time scale was 

considered. Fig. 3 shows the error from both oscillators 

compared to the input signal. A repetitive 0 and 1 signal with 

positive logic was used as the input. It can be observed that 

the errors exhibit a repetitive nature, with low and high 

values corresponding to the input signal. 

To retrieve the received signal appropriately, the errors 

were rectified and filtered. Fig. 4 shows the results of this 

process. The retrieved signals from both oscillators were then 

compared to derive the final output, as shown in the  Fig.5. 

The simulation results demonstrate the effectiveness of 

the proposed communication scheme. The use of RL agents 

in the receiver end allows for efficient and accurate signal 

retrieval, even in the presence of noise and other disturbances. 

The rectification and filtering of errors further improves the 

accuracy of the received signal. 

It seems that the proposed communication scheme shows 

promise for practical implementation in real-world scenarios. 

Further research can explore the use of different input signals 

and noise levels to evaluate the robustness of the scheme. 

 

 
Fig. 3. Error from both oscillators compared to the input signal. 

IV.  CONCLUSION 

In this paper, we proposed a reinforcement learning-based 

chaotic communication system for the secure transmission 

of encrypted state information in the smart grid. The 

proposed system uses a chaotic signal generated by a Lorentz 

oscillator to encrypt the state information, which is then 

transmitted through the communication channel. At the 

receiver end, the received signal is decrypted using a similar 

key generated by a forced Lorentz oscillator. The accurate 

determination of the force signal is essential for 

synchronizing chaotic signals, and this paper proposes the 

use of reinforcement deep learning agents to train and 

determine the force signal. 
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The proposed communication scheme involves the use 

of a state estimator, a master chaotic oscillator, two slave 

oscillators, and two RL agents. The proposed system was 

Simulated using MATLAB Simulink, and the results show 

that the errors exhibit a repetitive nature, with low and high 

values corresponding to the input signal. The proposed system 

provides a reliable and secure system for transmitting sensitive 

information over communication channels. 

 

 

Fig. 4. Retrieved signals after rectification and filtering. 

 

 

Fig. 5.  Comparison of retrieved signals from both oscillators to derive 

final output. 
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