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Abstract-- This paper addresses the synchronization issue of 

agents with their respective leaders in each cluster for unknown 

discrete-time zero-sum graphical games with constrained input. 

To solve the coupled Hamilton-Jacobi-Isaacs equations under the 

assumption of unknown dynamics, an adaptive optimal 

distributed technique based on value iteration heuristic dynamic 

programming is proposed. An actor-critic framework is employed 

to approximate the value functions, control policies, and worst-

case disturbance policies necessary for implementing the proposed 

method. Additionally, neural network identifiers are utilized to 

determine each agent's unknown dynamics. To prevent system 

instability, a constraint on control inputs is incorporated into the 

design method. By considering disturbances in the dynamics, the 

proposed solutions are made robust against unpredictable events, 

enhancing performance and stability. Furthermore, the closed-

loop system's stability is proven. Finally, the theoretical results are 

validated through simulation outcomes. 

 
Index Terms-- Cluster synchronization, Discrete-time graphical 

zero-sum games, External disturbances, Input constraint, Neural 

network, Reinforcement learning, Unknown dynamics. 

 

I.  INTRODUCTION 

ue to the wide range of distributed control applications in 

multi-agent systems (MAS) across various technical 

domains, research in these fields has attracted considerable 

attention over the last two decades [1, 2]. In recent years, 

distributed control methods have been developed to address 

consensus and synchronization problems [3, 4]. As more and 

more tasks are being assigned to MAS in various fields, it has 

become necessary in some cases to divide the network's agents 

into several subgroups so that they can perform different tasks 

in a coordinated manner. By dividing agents into these 

subgroups, known as clusters, MAS can effectively perform 

various tasks while maintaining coordination and achieving 

common goals. Indeed, the importance of cluster 

consensus/synchronization cannot be understated. Examples of 

applications for cluster consensus and synchronization can be 

found across a wide range of fields, including opinion 

formation, bacterial colony pattern formation, and many others. 

In the cluster synchronization problem, agents in separate 

clusters achieve different states, while agents within the same 

cluster converge to the same state. Cluster consensus problems 

are generally categorized into two types: cluster tracking and 

cluster regulation. In cluster regulation, agents within a cluster 

converge to a similar value, which is often uncontrollable [5, 

6]. Cluster tracking involves agents within the same cluster 
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following a leader, although the paths taken by different leaders 

eventually diverge [7, 8]. 

The cluster consensus study of MAS using inter-cluster 

nonidentical inputs has been examined in [9]. Reference [10] 

addresses the issue of distributed feedback controllers for 

cluster consensus in generic linear MASs with a directed 

interaction topology. While these studies provide important 

insights, they do not consider performance index optimization 

or guarantee optimality in the proposed methods. To address 

this, game theory can be utilized as a framework for solving the 

problem. 

Optimal multi-agent control problems, in which each agent 

seeks to optimize their performance index and obtain an optimal 

policy, are well-suited for research within the framework of 

game theory [11]. Since many real-world MAS problems 

involve external disturbances, solving multi-agent games with 

unknown external disturbances is crucial. Neglecting these 

factors can result in performance degradation and instability. 

Graphical games, initially developed for continuous-time 

(CT) systems, are employed to optimally solve distributed 

leader-follower consensus problems in both linear [12–14] and 

nonlinear [15] systems. In these games, each follower's 

performance index, actions, and local error dynamics depend on 

local information from their neighbors. Zero-sum differential 

graphical games for CT systems, which account for the 

existence of external disturbances, have been explored in [16, 

17]. Several studies have also investigated discrete-time (DT) 

two-player zero-sum games [18–20]. Additionally, linear N-

player DT graphical games have been studied by [21, 22]. 

To determine the solutions of multi-agent graphical games 

that include external disturbances, the Hamilton-Jacobi-Isaacs 

(HJI) equations must be solved. However, solving these 

nonlinear equations can be challenging in certain cases. 

Consequently, approximate-based approaches are often used, 

typically employing reinforcement learning or other iterative 

methods. 

In recent years, reinforcement learning algorithms [23] have 

gained traction as powerful tools for solving multi-agent games 

[24, 25]. Two well-known reinforcement learning methods are 

policy iteration (PI) and value iteration (VI), both of which can 

be implemented online using a critic-actor structure. In this 

framework, the critic is a neural network that estimates the 

value function, while the actor estimates the optimal policies. 

In practice, physical systems often exhibit complex 

dynamics that are challenging to model accurately. 

Additionally, the presence of saturation nonlinearity in many 
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actuators requires careful consideration in controller design. 

Neglecting saturation nonlinearity can result in performance 

degradation or even instability, as demonstrated in numerous 

studies [26, 27]. Therefore, solving multi-agent games with 

unknown dynamics and constrained input is essential for 

maintaining stability and achieving optimal performance. 

Many studies on cluster consensus have been conducted, but 

the methods presented have not addressed the optimality 

problem [5–10]. While numerous references have tackled the 

graphical game problem, they have not considered cluster 

synchronization [12–17, 21, 22]. References [28] and [29] 

address the cluster synchronization problem in graphical 

games; however, they do not account for disturbances in the 

dynamics of agents. In our proposed method, we tackle cluster 

synchronization for zero-sum graphical games while 

considering disturbances in the dynamics of agents. 

Considering disturbances in the dynamics helps ensure that the 

proposed solutions are robust and can withstand unpredictable 

events, ultimately leading to improved performance and 

stability.  

To the best of our knowledge, no result has been reported on 

cluster synchronization for DT zero-sum graphical games with 

unknown constrained-input systems that can address the N-

player optimal leader-follower cluster consensus problem. So 

this paper first introduces multi-agent DT linear zero-sum 

graphical games with unknown constrained-input systems and 

external disturbances, and then cluster synchronization is 

proposed for these games.  

The following are the main contributions of this paper: 

• The first contribution is the introduction of DT zero-sum 

graphical games for linear MASs that utilize the local 

information of neighbor agents to achieve the optimal leader-

follower synchronization problem. 

• For the first time, the cluster synchronization of DT zero-sum 

graphical games is introduced. 

• A VI HDP algorithm in an online and distributed fashion is 

proposed.  

• The presented algorithm solves the games under the 

assumption of unknown dynamics, where each agent's 

unknown dynamics are identified using an identifier. 

• Constraints on control inputs and external disturbances are 

considered to make the proposed algorithm more applicable to 

real-world problems. 

Structure: This paper is organized into the following sections: 

Section Ⅱ provides background information on graphs, the 

cluster synchronization problem, and optimal distributed 

consensus control for DT MAS with external disturbances. In 

Section Ⅲ, the focus shifts to linear zero-sum DT graphical 

games with disturbances and control constraints, including a 

proof of closed-loop stability. The proposed optimal distributed 

algorithm is presented afterward in Section Ⅳ. Section Ⅴ 

describes the identifier used for each agent's unknown 

dynamics, while Section Ⅵ introduces the actor-critic structure 

employed in the proposed algorithm. Finally, the simulation 

results are presented, followed by the conclusions. 

II.  PRELIMINARIES 

This section begins with an overview of graph theory, 

followed by a review of the cluster synchronization problem 

and optimal distributed consensus control for DT MAS with 

external disturbances. 

A.  Graphs 

The directed graph ( , )Gr P=   provides a description of the 

interactive topology for N agents' information exchange, where 

a set of graph edges is P P    and a set of graph nodes is 

0{ ,....., }NP p p= . [ ] N N

ijC c R =   represents an 

adjacency matrix for the graph such that 0ijc   if 

( , )j ip p  , otherwise 0ijc =  where ( , )j ip p  means that 

the agent i  can get information from the agent j  but not 

necessarily vice versa. The list of the node 
ip 's neighbors is 

shown with { : ( , ) }i j j iN p p p=  . Denotes  the in-degree 

matrix of Gr  with 
i

i ijj N
q c


= . The Laplacian matrix of 

the graph is indicated by L Q C= − . The pinning matrix is 

given by { }i
N NG diag g R = , where 0ig   is the 

pinning gain. If the agent i  is connected to the leader, it is non-

zero; otherwise, it is equal to zero. A graph has a spanning tree 

if there is a directed path from an agent called the root to all 

other agents. This paper assumes that the graph has a spanning 

tree. 

B.  Problem Formulation 

On the graph Gr  with N follower agents, the 
thi  agent's 

dynamic is as follows 

(1) ( ) ( )1 ( ) ( )i i i i i is tt s t u E t+ =  + +  

where ( ) n

is t  , ( ) m

iu t   and ( ) d

i t   are the 

state, control input, and external disturbance vector of agent i , 

respectively.  , i  and iE are the state, control input, and 

disturbance matrices, respectively, which are all considered 

unknown in our studies. The assumption is that there are a  

clusters and a  virtual leaders. In each cluster, the agents must 

track the corresponding leader. 

The leader dynamics for each cluster ( ) n

ks t   are 

described as follows 

(2) ( )( 1) 01,....,0k ks t s t k a+ =  =  

Where, in each cluster, the leader is at least connected to one of 

the follower nodes. 

Synchronizing all follower agents' states to the leader in each 

cluster is the goal of the cluster leader-follower consensus. 

Cluster synchronization for the MAS (1) is achieved when, for 

each agent, there is a control policy iu  that guarantees the 

following conditions for any initial state (0)is  

(3) ( ) ( )lim 0 , 1,...,i j
t

s t s t i j N i j
→

− =  = =  

(4) ( ) ( )lim 0 , 1,...,i j
t

s t s t i j N i j
→

−   =   
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Which is cluster related to the agent i  and j  is cluster related 

to the agent j . 

Equation (3) shows the synchronization of agents inside a 

cluster. So that the agents in each cluster follow the leader of 

the cluster. Therefore, (3) can be rewritten as below: 

( ) ( )lim 0 1,...,i k
t

s t s t i N
→

− =  =  
(5) 

cluster i 's leader is represented by 
ks . 

Equation (4) shows that by choosing a different initial value 

in equation (2), different paths are created for the leaders: 

( ) ( )lim 0 , 01,...,0r e
t

s t s t r e a r e
→

−   =   
(6) 

The cluster local error of agent i  [30] is 

(7) ( ) ( ) ( )( ) ( ) ( )( )
i

i ij j i i

j N

t it c s t ts g ss t t


= − + −  

The network cluster local error for all agents is  

(8)  ( ) ( )( ) ( ) ( )( )n tL G I tst ts = − +  −  

where 
1 , ,

T
T T nN

Nss s =    , 
1 , ,

T
T T nN

N  =    , 

( ) ( ) ( ), ,t t t

T
T T nNs t s t ts =    . 

For cluster synchronization, the error vector is specified as 

(9) ( ) ( ) ( )t

nNs st t t = −    

If in each cluster a root node is connected to the leader and 

the graph has a spanning tree, ( )L G+  is non-singular [30]. It 

is demonstrated in [21] that if ( )L G+  is non-singular, the  

synchronization error vector is bounded as 

(10) ( ) ( ) / ( )t t L G  +  

Where is a matrix's smallest singular value. Therefore, cluster 

leader-follower synchronization can be achieved by keeping the 

cluster local error small.  

For simplicity, ( )is t  is written as its  from now on, and 

other variables are considered similarly. 

By using equations (1) and (7), the 
thi  agent's cluster local error 

dynamics are obtained as  

(11) 
( 1) )

)

( )(

(
i

i t it i i i it

ij j jt

j N

i it

j jt

EA q g B u

c B u E

  



+



= − + +

+ +

 

To obtain cluster leader-follower synchronization, the 

development of a distributed controller for agents in each 

cluster is suggested to minimize equation (11) for 0it  , 

under the unknown dynamics of the system.  

III.  MULTI-PLAYER ZERO-SUM DISCRETE-TIME GRAPHICAL 

GAME 

In this section, we introduce a novel type of game, called 

linear zero-sum DT graphical games, which considers both 

disturbance and control constraints. By utilizing the cluster 

local error dynamics (11) and introducing a local performance 

index, these games are defined. 

The 
thi  agent's local performance index is defined as: 

(12) 

0

0

2 2

( , , , , ) ( , , , , )

1
( ) ( )

2
i

i

i it it it it it i it it it it it

t

T

it ii it it jt

t j N

T T

it ii it jt ij jt

j N

J u u U u u

O W u W u

T T

   

   

 











− − − −

=



= 



=

= + +

− −



 



 

Where 0 n n

iiO   , 0 d d

iiT   ,  0   is a 

prescribed constant and (.) 0W  . The control input and 

disturbance of 
thi  agent's neighbors are denoted by 

{ | }i j iu u j N− =   and { | }i j ij N − =  , respectively. 

For each player, a nonquadratic functional [31] is used to take 

into account the control input constraints: 

(13) 
1

0

( ) 2 ( )
iu

T

itW u Y x Y ydx
−

−=   

Where 0y   i a diagonal positive definite matrix, 
mx R  , 

mR   , 
1 1 1 1 2 1( ) [ ( ) ( ).... ( )]m T

it it it itu u u u   − − − −=  where 

z

itu  is the z-th element of the vector itu , 0,...,z m= . (.)  

is a monotonic odd bounded function satisfying (.) 1   and 

its first derivative is bounded. Y  is a bound for actuators. In 

this paper, (.) tanh(.) = .  

Each 
thi agent 's value function is defined as: 

 

(14) 

 

( ) ( , , , , )i it i ib ib ib ib ib

b t

V U u u  


− −

=

=  

A.  Bounded L2-gain synchronization problem 

For zero-sum DT graphical games, it is desirable to find a 

constrained control input itu  that solves the synchronization 

problem when 0it = . This input should satisfy the following 

bounded 2L -gain condition for a given 
*  , with 0it   

for all players. 

(15) 

0

2

0

0

( ( ) ( ))

( ) ( )

i

i

M
T

it ii it it jt

t j N

M
T T

it ii it jt ij jt i

t j N

O W u W u

T T      

 
= 

= 

+ +

 + +

 

 

 

For several bounded functions   such that (0) 0 = . Let 

*  is the minimum amount of   that satisfies the above 

bounded 2L -gain condition. 

B.  Coupled Hamilton-Jacobi-Isaacs equation 

Based on equations (11) and (12), the Hamiltonian function 

for each agent can be defined as follows: 
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(16) ( )( )

( )

( ) ( )

( 1)

(

2

1)

2

, , , , ,

)

)

(

 
1

0

)(

 

(

,
2

(0) 0

i

j

i

it i i i it

ij j jt

j N

i it i i

T

it ii it it

i
T T

it

t it it it it

i itT

i i t
j jt

jt

j N

ii it jt ij jt

j N

H V u u

E

V E

W

A q g B u

c B u

O u

T

u

V
T

W

   

 



   



 









+ − −

+



 =

 
 
 
 

 + +
 

+ = 

− + +

+ +

=
−  
 

−







 

 

By employing the stationarity conditions, 0i

it

H

u


=


 and 

0i

it

H




=


, the bounded optimal control and disturbance 

policies are determined in the following ways: 

(17) 𝑢𝑖𝑡
∗ = argmin

𝑢𝑖𝑡

(𝐻𝑖(𝜌𝑖𝑡 , 𝛻𝑉𝑖(𝜌𝑖(𝑡+1)), 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 , 𝜔𝑖𝑡 , 𝜔−𝑖𝑡))

= �̅�𝜙 ((�̅�𝑦)−1(𝑞𝑖 + 𝑔𝑖)𝐵𝑖
𝑇𝛻𝑉𝑖

∗(𝜌𝑖(𝑡+1)))
 

(18) 𝜔𝑖𝑡
∗ = argmax

𝜔𝑖𝑡

(𝐻𝑖(𝜌𝑖𝑡 , 𝛻𝑉𝑖(𝜌𝑖(𝑡+1)), 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 , 𝜔𝑖𝑡 , 𝜔−𝑖𝑡))

= −
1

𝛾2
(𝑞𝑖 + 𝑔𝑖)𝑇𝑖𝑖

−1𝐸𝑖
𝑇𝛻𝑉𝑖

∗(𝜌𝑖(𝑡+1))
 

By substituting equations (17) and (18) into equation (16), 

we obtain the following coupled DT HJI equations: 

(19) ( )( )

( )

( )

( ) ( )

( )( )

( ) ( )

( )( )

* * * *

( 1)

1

1

1

2

( 1)

( 1) 1

1

*

*

*

, , , , ,

( )

( )

 

i

i

i it i i t it it it it

i

i
T

i i i t

i i
i

i i ii

T

i i i tT

i i t

j

j
T

j j

t

j

j t

ij

H V u u

Yy
YB

V

g
E

q g T

E V
V

YR
YB

V

q g

B

A q

q g

B

c

   
















+ − −

−

+

−

+

+ −

+

 =

  
  
   
  

− +  
 +
 
 
  
 


 
 
  

+



 
− 
 
 
 

+


 

+

( ) ( )

( ) ( )( ) ( )( )

( ) ( )( )

1

2

( 1)

* *

2 1 *

1 12

2

*

*

12

*

( )

( )

 

1
-

1

2 1

i

j

jj N
j j jj

T

j j t

T

it it it jt

j N

T
T

i i i i ii i ii t i t

j

ii

j j

T

j j t

E
q g T

E V

W u W u

g V E T E

O

q

q

V

g V



 













−

+



−

+ +

+

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

  + 
 

 
 

     

+ +

+  

+

− + 

 
 −
 
 
  





( )( )1 1 *

1

0,

T  

(0) 0

ij N

T

j jj ij jj j j j t

i

B T T B V

V





− −

+

 
 
 
 
 

= 
 
 
 
  
 

=



 

Solving the coupled DT HJI equations can be a difficult task, 

often leading to intractable results. To overcome this challenge, 

we propose the use of the VI algorithm as an approximate 

solution method for these equations. 

Theorem 1. In each cluster, let 
*( ) 0i itV    satisfies equation 

(19). Let the condition 
2

( ( ) ( )

( )

i

i

T

it ii it it jt

j N

T T

it ii it jt ij jt

j N

Q W u W u

T w T

 

   





+ +

 +




 

holds. Assuming control and disturbance policies are 

respectively given by (17) and (18) in terms of 
*

iV , and that the 

communication graph has a spanning tree with 0ig   for at 

least one agent, then the dynamics of the cluster local error (11) 

will be asymptotically stable, resulting in synchronization of all 

agents' states within each cluster to the leader state. 

 

Proof. Considering the first difference of equation (14), the 

Bellman equation for each agent 𝑖 is obtained as follows  

(20) 
( 1)( ) ( , , , , ) ( )i it i it it it it it i i tV U u u V  − − += +  

Consider 
*( ) 0i itV −   as Lyapunov function for (11), and 

from (20) we have  

(21) * *

( 1)

* * * * *

( ( ) ( ))

( ,, ) 0, ,

i i t i

it it it it

it

i it u

V

u

V

U







 − −

+− −

= 
 

Therefore, the dynamics of cluster local error (11) will be 

asymptotically stable, leading to the synchronization of all 

agent states to their respective leader states. 

IV.  VALUE ITERATION ALGORITHM FOR DT ZERO-SUM 

GRAPHICAL GAMES 

This section introduces an online VI HDP method for 

solving the DT zero-sum graphical game within each cluster 

based on Bellman equations (20). Algorithm 1 is applied to all 

clusters, allowing for the coupled Bellman equations of each 

cluster to be solved and optimal values, control policies, and 

disturbance policies to be obtained in each cluster. 

 

Algorithm 1 

Value Iteration Algorithm for DT Zero-Sum Graphical Games 

(Initialization). Give arbitrary initial control and disturbance 

policies and values for all agents. 

(Policy evaluation). Solve the following equation to obtain 
1l

iV +
 

(22) 1

( 1)( ) ( , , , , ) ( )l l l l l l

i it i it it it it it i i tV U u u V   +

− − += +  

(Policy improvement). Update the disturbance and control 

policies with the following equations. 

(23) 

 ( ) ( ) ( )( )
111

1

l
T

i i i

l

ii tt iu Y q g BYy V 
+−+

+

 + = 
 
 

 

         (24) 
1 1

( )2

1

1

1
( ) ( )T l

i i ii i

l

tit i iq g T E V


+ − +

+= − +   

For all i , when 
1( ) ( )l l

i it i itV V  + −  end.   is a small 

constant. 
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l  denotes the iteration index. 

V.  NEURAL NETWORK-BASED SYSTEM APPROXIMATION 

This study assumes that the drift, input, and disturbance 

dynamics of each agent in all clusters are unknown. To address 

this challenge, we employ a neural network-based identification 

technique that approximates the unknown system dynamics as 

follows: 

(25) ( 1) ( ( )) ( )T T

i is is is is iss t W v z t t + = +  

where (.)is  is the activation function and it is presumed to be 

bounded, ( )is t  is the NN estimation error, 

( ) [ ]T T T T D

is it it itz t s u R=   is the NN input with 

D n m d= + + , 
T

isv  and 
T

isW  denote the ideal weight matrix 

between the input layer and the hidden layer, the hidden layer 

and the output layer, respectively. 

In the system identification process, 
T

isv  is assumed to be 

constant and only 
T

isW  is adjusted. Hence, the identifier 

network output is described as  

(26) ˆˆ ( 1) ( ( ))T

i is is iss t W Z t+ =  

where ( ) ( )T

is is isZ t v z t=  , îs  is the estimated state vector and 

ˆ
isW  is the estimation of isW . 

The approximation error for system identification is defined 

as   

(27) ˆ ( 1) ( 1)

ˆ ( ( )) ( 1)

is i i

T

is is is i

e s t s t

W Z t s t

= + − +

= − +
 

The squared approximation error is defined as follows  

(28) 1
( )

2

T

is is isE e e=  

The identifier weights are updated using the gradient descent 

rule as  

(29) ( 1)ˆ ˆ

ˆ( ( ))( ( ( )) ( 1))

l T lT

is is

lT l T

is is is is is is i

W W

Z t W Z t s t  

+ =

− − +
 

where 0 1is   denotes the learning rate of the identifier 

network. 

After the learning process in the NN, the identifier weight 

matrix will converge to a certain value ˆ T

ismW . Then, the 

identifier network output is expressed as 

(30) ( ) ( ) (ˆ ˆ ˆˆ )1 ( )

ˆ ( ( ))

i

T T

ism is

i i

is s

i

i

s t As t Bu t t

W v z t

E

=

+ = + +
 

where Â , B̂  and Ê  are the estimations of A , B  and E , 

respectively. 

VI.  IMPLEMENTATION OF THE VALUE ITERATION HDP 

ALGORITHM FOR UNKNOWN DT ZERO-SUM GRAPHICAL GAMES  

This section provides an actor-critic structure for the 

implementation of the HDP algorithm in each cluster. For all 

agents within each cluster, the critic network is built to estimate 

the optimal value function and carry out the policy assessment 

(22). The actor approximators are constructed to perform the 

policy improvement equations (23) and (24), which estimate the 

bounded optimal control and disturbance policies for agents in 

each cluster. Additionally, each agent's unknown dynamics are 

approximated using a neural network. 

A.  Actor-critic approximators and tuning 

In each cluster, for any agent i , the control and disturbance 

policies are estimated using actor approximators ˆˆ (. )i iau W  and 

( )ˆ .i idW , respectively. Also, the optimal value function is 

estimated using the critic approximator ( )ˆ ˆ.i icV W  so that  

 

                   (31) ( )ˆˆ ( )ˆ T

ik ia ia iuu WW t=  

 

                   (32) ( )ˆˆ ( )ˆ T

ik id id idWW t =  

                      

                     (33) ( )ˆ ˆ ˆ( ) ( )T

ic ic

T

ik ic icW t W tV  =  

where ˆ
iaW  , ˆ

idW  are the estimated actor weights for control 

and disturbance, respectively and ˆ
icW  is the estimated critic 

weight. iu , id  and ic  are the activation functions for 

control actor, disturbance actor, and critic, respectively. It is 

assumed that all activation functions are bounded, i.e., 

(.)iu ium  , (.)id idm   and (.)ic icm    . Each 

agent's activation function is equal to the cluster local error 

vector of that agent and its neighbor.  

The actor network's approximation error for the control input is 

described as 

(34) ( ) ˆˆˆ ( )T

it ia iia iat iiu tu ue t uW W = − = −  

The control input iku  is given as  

(35) 
( ) ( ) ( )( )( )1

1
ˆˆT

it i i i i tiq gu Y Yy VB 
−

+
+=   

By using (33), (35) can be written as follows 

(36) 
( ) ( )( )1 ˆ ˆ

i

T T

it i i i icq gu y BY WY F
−

+=  

where [0....[ ] ....0] n nN

i iiF I =  . 

The following is the definition of the actor network's squared 

approximation error for control input 

(37) 
( )

1

2
ia a

T

ia ie eE =
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The actor weights for control input are updated using the 

gradient descent algorithm.  

(38) ( )

( )( )

1

( )

ˆ ˆ

(ˆ )

l T lT

ia ia

lT l

ia ia

T

iu iuit

W W

W ut t  

+
=

− −
 

0 1ia   is the learning rate of the actor network for control 

input. 

Similarly, the actor network's approximation error for 

disturbance is described as 

  (39) ( ) ˆˆ ( )ˆ T

ik id iid idt iid tWe W t   = − = −  

The disturbance ik  can be defined as  

            (40) 
1

( 1)2

1 ˆ ˆ( ) ( )T

it i i ii i i i tq g T E V 


−

+= − +   

By using (33), (40) can be written as follows 

            (41) 
1

2

1 ˆ( ˆ) T T

it i i ii i i icq g T FWE


 −= − +  

The following defines the disturbance actor's squared 

approximation error 

                             (42) 
( )

1

2
id d

T

id ie eE =  

To update the actor weights for the disturbance, the gradient 

descent rule is employed as follows.  

(43) ( )

( )( )

1

( )

ˆ ˆ

(ˆ )

l T lT

id id

lT l

id id dk

T

id i it t

W W

W  

+
=

− −
 

0 1id   represents the disturbance's learning rate. 

The objective value function ikV  is given by 

 

(44) ( ) ( )
( )12 2

 
1

2 ˆ ˆ ˆ ˆ-

ˆ ˆ

ˆj

i

T l l

i i it jt

j N l

it i tlT l lT l

it ii it jt ij jt

j N

ii W u

V

O W u

V
T T



     




+



 + +
 

= + 
−  

 




 

The following is the critic network's approximation error. 

                            (45) ( )ˆ ˆ
ic it it ice V V = −  

The following defines the squared approximation error for 

the critic: 

(46) 
( )

1

2
ic c

T

ic ie eE =  

The critic weights are updated using the gradient descent 

method as follows.  

  

(47) 

( )

( )

1

( ) ( ) ( ) ( )

ˆ

ˆ ( )

ˆ l T lT

ic ic

lT

ic ic

T T

ic ic i ick ic

W W

t W t V t t   

+
=

− −
 

where 0 1ic   denotes the critic network learning rate. 

In the following section, Algorithm 2 is presented for the online 

tuning of actor-critic network weights in unknown zero-sum 

discrete-time graphical games. Additionally, to enhance 

understanding of the proposed algorithm, the flowchart of  

Algorithm 2 is provided in the Appendix. 

 

 Algorithm 2 

Actor-Critic Network Weights Online Tuning for Unknown 

DT Zero-Sum Graphical Games 

    1. Initialize the critic weights with zero, and the actors and 

identifiers weights randomly. 

    2. Initialize the initial state (0)ix  and (0)tx  for all leader 

agents randomly.  

    3. Do Loop (𝑙 iterations)   

        - Calculate the local tracking error 0i  on the system 

trajectory for all agents.  

        - Calculate the control policies ˆ l

itu  by equation (31)  

        - Calculate the disturbance policies ˆ l

it  by equation (32)  

        - Calculate the estimated state ( 1)
ˆl

i ts +  by equation (26)  

        - Calculate the cluster local error ( 1)

l

i t +  (11) using the 

estimated states  

        - Calculate the value function ( 1)
ˆ l

i tV +  by equation (33)  

        - Update the critic weights 

( )

( )

1

( ) ( ) ( ) ( )

ˆ

ˆ ( )

ˆ l T lT

ic ic

lT

ic ic

T T

ic ic i ick ic

W W

t W t V t t   

+
=

− −
 

where ikV  is gained by equation (44)  

        - Update the actor weights 
( ) ( )1

)ˆ (ˆ (ˆ )
l T lT lT l

ia ia ia ia

T

iu iuikW W W ut t  
+

= − −  

( ) ( )1ˆ ˆ ˆ (( ) ( ))
l T lT lT l

id id id id iid ik

T

dW W W t t  
+

= − −          

          - Update the identifier weights 
( 1)ˆ ˆ ˆ( )( ( ) ( 1))l T lT lT l T

is is is is is is iW W t W t s t  + = − − +  

- For all i , when 1ˆ ˆ( ) ( )l l

i it i itV V  + −   end, where   is 

a small constant. 

 

Theorem 2. Let the weight updates for the identifier, control 

actor, disturbance actor, and critic NNs be given by (29), (38), 

(43), and (47), respectively. If the learning rates for the NNs are 

chosen appropriately, the weight estimation errors for the 

identifier, control actor, disturbance actor, and critic NNs will 

be uniformly ultimately bounded. 

Proof. The errors in weight estimate are as ˆl l

is is isW W W= − ,

ˆl l

ia ia iaW W W= − , ˆl l

id id idW W W= −  and ˆl l

ic ic icW W W= −

where isW , iaW , idW  and icW  are ideal values of the identifier, 

control actor, disturbance actor, and critic network weights, 

respectively. Then, based on (29), (38), (43) and (47), one has 

 
( 1) ( )l T lT l T

is is is is isW W e + = −  (48) 

( 1) ( )l T lT l T

ia ia ia ia iuW W e + = −  (49) 
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( 1) ( )l T lT l T

id id id id idW W e + = −  (50) 

( 1) ( )l T lT l T

ic ic ic ic icW W e + = −  (51) 

where ( )T

ic

l

ic icWe t= , 𝑒𝑖𝑎
𝑙 = �̃�𝑖𝑎

𝑇𝜑𝑖𝑢(𝑡), ( )T

id

l

id idWe t=  

and 𝑒𝑖𝑠
𝑙 = �̃�𝑖𝑠

𝑇𝜑𝑖𝑠(𝑡). 
The Lyapunov function candidate is defined as follows. 
 

𝛥𝑃𝑖(�̃�𝑖𝑎
𝑙𝑇 , �̃�𝑖𝑑

𝑙𝑇 , �̃�𝑖𝑐
𝑙𝑇 , �̃�𝑖𝑠

𝑙𝑇) = 𝑡𝑟{�̃�𝑖𝑎
(𝑙+1)𝑇

�̃�𝑖𝑎
(𝑙+1)

− �̃�𝑖𝑎
𝑙𝑇�̃�𝑖𝑎

𝑙 }

+ 𝑡𝑟{�̃�𝑖𝑑
(𝑙+1)𝑇

�̃�𝑖𝑑
(𝑙+1)

− �̃�𝑖𝑑
𝑙𝑇�̃�𝑖𝑑

𝑙 }

+ 𝑡𝑟{�̃�𝑖𝑐
(𝑙+1)𝑇

�̃�𝑖𝑐
(𝑙+1)

− �̃�𝑖𝑐
𝑙𝑇�̃�𝑖𝑐

𝑙 }

+ 𝑡𝑟{�̃�𝑖𝑠
(𝑙+1)𝑇

�̃�𝑖𝑠
(𝑙+1)

− �̃�𝑖𝑠
𝑙𝑇�̃�𝑖𝑠

𝑙 }

≤ 𝜇𝑖𝑎‖𝑒𝑖𝑎
𝑙 ‖

2
(𝜇𝑖𝑎‖𝜑𝑖𝑢‖

2 − 2)

≤ 𝜇𝑖𝑑‖𝑒𝑖𝑑
𝑙 ‖

2
(𝜇𝑖𝑑‖𝜑𝑖𝑑‖

2 − 2)

≤ 𝜇𝑖𝑐‖𝑒𝑖𝑐
𝑙 ‖

2
(𝜇𝑖𝑐‖𝜑𝑖𝑐‖

2 − 2)

≤ 𝜇𝑖𝑠‖𝑒𝑖𝑠
𝑙 ‖

2
(𝜇𝑖𝑠‖𝜑𝑖𝑠‖

2 − 2)

 

 

Since all activation functions are bounded, if 
2

2 /ia iu  , 
2

2 /id id  , 
2

2 /ic ic   and 

2
2 /is is  , then ( , , , ) 0lT lT lT lT

i ia id ic isP W W W W  . 

So, the proof is complete. 

VII.  SIMULATION STUDY 

This section provides an example of cluster synchronization 

in discrete-time zero-sum graphical games, demonstrating the 

effectiveness of the presented method in synchronizing agents 

with the leader in each cluster. As shown in Fig. 1, consider a 

MAS with eight agents. Agents 1 through 4 are located in the 

first cluster, where agent 4 is connected to the leader. Agents 5, 

6, 7, and 8 are situated in the second cluster, with agent 8 

connected to the leader. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Graph structure of multi-agent system with 8 agents 

 

The drift, input, and disturbance matrices for each agent and 

leader are given as follows:  
𝑠𝑖(𝑡 + 1) = 𝛢𝑠𝑖(𝑡) + 𝛣𝑖𝑢𝑖(𝑡) + 𝐸𝑖𝜔𝑖(𝑡) ,     𝑠0(𝑛 + 1) = 𝐴𝑠0

     𝑠𝑖 = [
𝑠𝑖1
𝑠𝑖2

] , 𝑖 = 01,02,1,2,3,4,5,6,7,8

𝐴 = (
0.995 0.09983

−0.09983 0.995
)

 

 

 

 

 

The drift matrix of the leader is as 

 

1 2 3

4 5 6 7

8

0.2047 0.2147 0.02097

0.8984 0.2895 0.1897

0.2 0.3 0.2 0.09
 

0.0 0.1 0.9 0.3

0.2

0.

1

1

B B B

B B B B

B

     
= = = = =     
     

       
= = = = = = =       
       

 
= =  

 

 

 
1 2 3

4 5 6 7

8

0.2047 0.2147 0.02097

0.8984 0.2895 0.1897

0.2 0.3 0.2 0.09
 

0. 0.01 0.9 0.3

0.2

0.1

1

E EE

E E E

E

E

     
= = = = =     

−     

       
= = = = = = =       
       

 
= =  

 

 

The pinning gains are 

1 2 3 5 6 7 0g g g g g g= = = = = = , 4 8 1g g= =  and the 

edge weights are considered as 

12 58 15 31 67 230.7, 0.1, 0.6, 0.4c c c c c c= = = = = = , 

14 56 75 0.8e e e= = = . The learning rates are chosen as 

0.1ic ia is id   = = = = . The disturbance attenuation is 

given by 1.5 =  and bound for actuators is considered as 

1U = . A hyperbolic tangent function ( ) ( ). tanh . =  is 

considered for the input constraint. 

  The performance index's matrices are chosen as 

2 2ii iiO T I = =  for all agents. 

 

 
Fig. 2.  The weights update of the control input actor for agent 1 

and agent 5 
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Fig. 3.  The weights update of the disturbance actor for agent 1 and agent 5 

 

 
Fig. 4.  Critic weights update for agent 1 and 5 

 

 
 

Fig. 5.  Identifier weights update for agent 1 and 5 

 

 
Fig. 6. Local errors of clusters 1 and 2 

 

 
Fig. 7.  Synchronization of follower agents to leader agents 

  
Fig. 8.  The agents' and the virtual leaders' three-dimensional trajectory 
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Fig. 9.  Control inputs of clusters 1 and 2 

 

Fig.s 2, 3, 4, and 5 illustrate the convergence of the control 

actor, disturbance actor, critic, and identifier for agent 1 in the 

first cluster and agent 5 in the second cluster, respectively. As 

shown in these figures, the weights of the critic-actor neural 

network have converged in both clusters. Fig. 6 displays the 

local errors for agents in the first and second clusters, all of 

which have converged to zero. The estimated states of all agents 

are presented in Fig. 7, demonstrating the synchronization of 

the states of all agents in a cluster with the leader of the same 

cluster while maintaining optimality. Fig. 8 depicts the three-

dimensional trajectory of the agents and their virtual leaders. 

Finally, Fig. 9 shows the bounded control inputs for all agents 

in the first and second clusters. The results indicate that the 

proposed algorithm for solving cluster synchronization in 

discrete-time zero-sum graphical games with unknown 

constrained-input systems has successfully converged to 

approximate optimal solutions. 

VIII.  RESULTS ANALYSIS 

This paper presents an innovative algorithm to address the 

cluster synchronization problem, allowing agents within each 

cluster to converge to their respective leaders. The presence of 

disturbances in the agents' dynamics adds realism to the 

proposed solution. Additionally, the issue of control input 

limitations is addressed, ensuring that the obtained inputs 

remain within an acceptable range. Remarkably, the proposed 

algorithm accomplishes all of this without requiring knowledge 

of the system dynamics. 

In the following table, several references are compared with the 

present study. 

 

TABLE I 

 Comparison of References with the Proposed Method 
References Graphical 

games 
Zero-sum 

games 
Cluster 

synchronization 
Constrained-
input systems 

[20] - ✓  - - 

[21] 
✓  - - - 

[28] 
✓  - ✓   - 

[29] 
✓  - ✓  ✓  

proposed 

method 
✓  ✓  ✓  ✓  

IX.  CONCLUSION AND FUTURE WORK 

In this study, the synchronization problem of agents within 

each cluster for discrete-time zero-sum graphical games with 

unknown constrained input systems and external disturbances 

is addressed. An algorithm is presented that solves this problem 

without requiring knowledge of the system dynamics. To 

determine each agent's unknown dynamics, a neural network 

(NN) identifier is employed. Additionally, constraints on the 

control inputs are considered in the design method. The 

suggested approach is implemented as actor-critic structures to 

approximate the optimal value function, optimal control, and 

worst-case disturbance policies for the agents in each cluster. 

Simulation results demonstrate the efficacy of the proposed 

algorithm in synchronizing with the leader in each cluster while 

ensuring optimality. 

In practical applications, MAS may encounter various 

challenges, including communication delays, packet loss, and 

system faults. Additionally, time delays between different 

groups of agents can significantly impact system performance. 

For example, in scenarios involving migrating geese or locust 

populations, agents within a group may arrive at a destination 

almost simultaneously, while agents from different groups may 

arrive at different times. This phenomenon is also evident in 

traffic management, where maintaining appropriate time delays 

between vehicles can help prevent congestion and accidents. 

We have not addressed this issue in the current study, but it 

can be considered for future work. Furthermore, exploring 

event-triggered methods instead of traditional approaches and 

applying clustering methods to classify agents into groups are 

additional topics that warrant investigation in future research. 
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APPENDIX 

In this part, the flowchart of Algorithm 2 is presented. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 10. Flowchart of Algorithm 2 

 


