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Abstract--Load forecasting is a key component of electric 

utility operations and planning. Because of today's highly 

developed electricity markets and rapidly growing power 

systems, load forecasting is becoming an essential part of power 

system operation scheduling. This paper proposes a new short-

term load forecasting model based on the large margin nearest 

neighbor (LMNN) classification algorithm to improve 

prediction accuracy. The accuracy of many classification 

methods, such as k-nearest neighbor (k-NN), is significantly 

influenced by the technique used to calculate sample distances. 

The Mahalanobis distance is one of the most widely used 

methods for calculating distance. Numerous techniques have 

been used to enhance k-NN performance in recent years, 

including LMNN. Our proposed approach aims to solve the local 

optimum problem of LMNN, compute data similarities, and 

optimize the cost function that establishes the distances between 

instances. Before using gradient descent to determine the ideal 

parameter values for the cost function, we employ a genetic 

algorithm to shrink the size of the solution space. Additionally, 

our method's forecasting errors are contrasted with those of the 

BPNN and ARMA models. The comparative findings show how 

well the recommended forecasting model performs in short-

term load forecasting. 

 
Index Terms-- Short-Term Load Forecasting; Large Margin 

Nearest Neighbor; Distance learning; Genetic Algorithm. 

 

I.  INTRODUCTION 

o achieve specific accuracy requirements, power system 

load forecasting refers to the study of or use of a 

mathematical method to systematically process past and 

future loads, accounting for significant system operational 

features, capacity expansion decisions, environmental 

factors, and social implications. Improving load forecasting 

techniques helps with planned power management, which 

helps with building reasonable power supply construction 

plans, facilitating power improvement, and maximizing the 

system's economic and social benefits. It also helps rationally 

organize the grid operation mode and unit maintenance plan. 

With more accuracy than long-term load forecasting, 

short-term load forecasting is used to predict the power loads 

in the upcoming months, weeks, or even days. Forecasting 

accuracy is crucial in power demand management because it 

directly affects operators' economic costs in the competitive 

power market [1]. Short-term load forecasting data indicate 

that not only can it optimize the combination of generator 

sets, economical dispatching, and the calculation of power 

flow for power generation, but it also ensures the financially 
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secure operation of the power system [2]. 

Short-term load forecasting (STLF) is primarily conducted 

using methods such as convolutional neural networks [3], 

fuzzy time series [4], and genetic algorithms [5], among other 

methods. Despite the widespread use of these techniques, 

several issues remain. For instance, (1) forecasting is 

complicated and simple mathematical formulas are not 

sufficient enough to solve this problem; (2) external factors 

such as weather conditions and consumer demands can lead 

to a dynamic environment that makes load forecasting very 

challenging; and (3) often models overfit or fall into local 

optima. Therefore, it is crucial to develop more precise and 

easier-to-understand models. 

Short-term load forecasting is a crucial aspect of power 

system operations, enabling grid operators to make informed 

decisions regarding generation scheduling, demand response, 

and system reliability. With the growing integration of 

renewable energy sources and smart grid technologies, the 

accuracy and efficiency of STLF have become increasingly 

important. Over the past decade, significant advancements 

have been made in this field, driven by developing novel 

forecasting models, integrating big data analytics, and 

applying machine learning techniques. 

The k-nearest neighbor (k-NN) algorithm [6] is a helpful 

tool that can be simply implemented for forecasting. It 

should, therefore, be one of the first options when there is 

little or no prior knowledge about the distribution data 

because it is frequently used to solve nonlinear problems in 

which the collected data do not always follow the linear 

assumption. Furthermore, it effectively minimises the effects 

of the variables on the experimental processes [7]. It makes 

no assumptions about the collected data; however, it is 

sensitive to outliers.  

To capture uncertainty and reflect the range of electrical 

load fluctuation, Dong et al. [8] proposed a deep learning 

strategy based on k-NN to solve the high computational cost 

due to the intricate network structure. The k-NN’s approach 

is first used to find elements of previous electrical load time 

series similar to the future values by measuring the distance 

between the training and testing datasets. Then, for multi-

objective optimization, the second generation of the non-

dominated sorting genetic algorithm is used to determine the 

maximum forecasting accuracy and the smallest category 

number of k-nearest neighbors. The prediction intervals are 

obtained using modified non-parameter kernel density 

estimation based on the network's forecasting outcomes. 

To implement LMNN for short-term load forecasting, the 
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algorithm must first be trained on historical load data to 

identify the underlying patterns and correlations. The model 

can then predict the short-term load demand using the present 

input attributes. With the help of this strategy, utilities will be 

able to decide with confidence on resource allocation, energy 

production, and grid stability shortly.  

Like every forecasting technique, LMNN is not without its 

pitfalls. The dynamic nature of power consumption patterns, 

which are impacted by several variables, including the 

holidays and unforeseen events, is one major difficulty. The 

model must be modified for accurate forecasts to account for 

these differences. Furthermore, there may be issues with data 

availability and quality because erroneous or missing data 

could make the model unreliable [9]. 

LMNN must be continuously improved to overcome the 

obstacles and increase accuracy and reliability. This research 

aims to improve the algorithm's ability to adjust to changing 

load patterns by adding sophisticated features considering 

other factors. Another important area of research is the 

inclusion of real-time data streams, which makes forecasts 

more resilient to unanticipated occurrences by enabling the 

model to react quickly to abrupt changes in demand. 

LMNN models can generate more reliable forecasts if the 

input data is precise, comprehensive, and indicative of the 

real load conditions. The production of comprehensive 

datasets that represent a variety of scenarios is made possible 

by cooperative efforts between utilities, research institutes, 

and data suppliers. This allows the algorithm to generalize 

effectively across a range of settings [10]. 

Deploying LMNN has broader goals than just improving 

operations right away. LMNN's precise forecasting is 

becoming increasingly important for utilities as they work to 

incorporate renewable energy sources into the grid and 

balance supply and demand. This is consistent with the larger 

goal of decreasing environmental impact and fostering 

sustainability. Through joint research, the energy industry 

may overcome obstacles and improve its capabilities, paving 

the way for more adaptable and robust short-term load 

forecasting, ultimately contributing to a more sustainable and 

efficient energy ecosystem. 

 

A. Motivation and Contribution 

Load forecasting plays a significant role in the planning 

and operations of electric utilities. Because of the highly 

developed electricity markets and the rapidly growing power 

systems of the modern world, load forecasting is becoming 

an essential part of power system operation scheduling. If the 

load forecasting is accurate, there is a good possibility of 

savings in control operations and decision-making, such as 

dispatch, unit commitment, fuel allocation, power system 

security assessment, and off-line analysis. Consequently, 

improving the accuracy of short-term load forecasting has 

always been the primary objective of load forecasting 

research. 

Our proposed approach seeks to solve the local optimum 

problem of LMNN, optimizes the cost function that 

determines the distances between instances, and introduces a 

cost function to calculate the fitness value. Due to the issues 

with the k-NN and LMNN methods, we first use the genetic 

algorithm to narrow down the range of the solution space. 

Then, we use gradient descent to determine the optimal value 

of the parameter in the cost function. This allows us to 

optimize the objective function in our method to obtain the 

distance for the test data and more accurate results. 

The main contribution of this paper lies in developing a 

novel short-term load forecasting model that combines the 

Large Margin Nearest Neighbor (LMNN) algorithm with a 

hybrid optimization approach using genetic algorithms and 

gradient descent. Key contributions include: (1) Proposing a 

method that addresses limitations in traditional LMNN and k-

NN algorithms, such as sensitivity to local optima and 

distance metric inefficiencies. (2) Incorporation of distance 

learning in a way that the method optimizes the Mahalanobis 

distance metric within LMNN to better classify and forecast 

electricity loads, enhancing the algorithm's adaptability to 

dynamic energy consumption patterns. (3) Improving 

forecasting accuracy and demonstrating superior 

performance in short-term load forecasting compared to 

traditional methods like Autoregressive Moving Average 

(ARMA) and Back-Propagation Neural Network (BPNN), as 

evidenced by lower forecasting errors (e.g., RMSE, NMSE). 

(4) Validating the forecasting model using real-world hourly 

electricity load data from the National Electricity Market of 

Australia, showing its utility in modern power systems. 

The rest of this paper is structured as follows: a literature 

review is in Section II. Materials and the proposed method 

are discussed in Section III. Simulation results are shown and 

discussed in Section IV. Finally, the conclusion is presented 

in Section V. 

 

II. LITREATURE REVIEW 

Ashfaq and Javaid [11] addressed the problem of 

forecasting electricity prices and loads by introducing an 

improved new technique. Their upgraded technique 

framework includes feature engineering and classification. 

Feature selection and feature extraction are components of 

feature engineering. For feature selection, Decision Tree 

Regression (DTR) is employed. Redundancy in features is 

removed through feature selection using Recursive Feature 

Elimination (RFE). Singular Value Decomposition (SVD) is 

used in feature extraction, the second step of feature 

engineering, to minimize the dimensionality of features. 

Forecasting and load prediction are the final steps. Two 

current methods, k-NN and Multi-Layer Perceptron (MLP), 

along with a new method called Enhanced k-NN (EKNN), 

were utilized to forecast power load and pricing. The 

accuracy of the suggested technique is superior to that of 

MLP and k-NN.  

The approach for Time Series Forecasting (TSF) based on 

the k-Nearest Features in Time Series (KNFTS) and k-Nearest 

Patterns in Time Series (KNPTS) algorithms, two variations 

of the k-NN method was suggested by Gómez-Omella et al. 

[12]. These algorithms are used to identify comparable 

electricity usage patterns and then provide future forecasts, 

while only a historical data set comprising the time and 

energy consumption variables is used. Additionally, it 

appears that using elastic similarity metrics like Dynamic 

Time Warping (DTW) and Edit Distance for Real Sequences 

(EDR) might be preferable to other error measurements. 

A study by Marino, Amarasinghe, and Manic [13] 

introduced a long short-term memory (LSTM) network for 

STLF, demonstrating that LSTM outperforms traditional 

neural networks by effectively capturing temporal 

dependencies in load data. Their work highlighted the 

importance of memory mechanisms in forecasting models, 

particularly in handling non-linear and non-stationary time 

series data. Similarly, Ryu, Noh, and Kim [14] compared 
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various deep learning architectures, including convolutional 

neural networks (CNNs) and gated recurrent units (GRUs), 

concluding that hybrid models combining CNN and LSTM 

layers provide superior forecasting performance due to their 

ability to extract both spatial and temporal features from load 

data. 

Integrating external factors, such as weather conditions 

and social events, into ML models has also been a focal point 

in recent research. Kong et al. [15] proposed a hybrid model 

that combines LSTM with attention mechanisms to focus on 

relevant features in the input data selectively. This approach 

significantly improves forecasting accuracy by dynamically 

adjusting the importance of different inputs based on their 

relevance to the prediction task. The study underscores the 

potential of attention-based models in enhancing the 

interpretability and performance of STLF models. 

Ensemble methods, which combine multiple models to 

improve forecasting accuracy, have seen considerable 

adoption in STLF. These methods leverage the strengths of 

individual models while mitigating their weaknesses, leading 

to more robust predictions. For instance, Khwaja et al. [16] 

proposed an ensemble framework that integrates support 

vector regression (SVR), random forests (RF), and deep 

learning models. Their approach demonstrated that ensemble 

models consistently outperform single models across various 

performance metrics, including mean absolute percentage 

error (MAPE) and root mean square error (RMSE). 

Another significant trend is the development of hybrid 

models that combine different forecasting techniques to 

capture diverse characteristics of load data. Bashir et al. [17] 

introduced a hybrid model that integrates wavelet transform, 

LSTM, and a time-varying seasonal model. Their study 

showed that the hybrid model outperforms standalone models 

by effectively decomposing the load data into different 

frequency components, allowing each component to be 

forecasted using the most suitable technique. This research 

highlights the potential of hybrid models in addressing the 

challenges posed by the complex and dynamic nature of load 

data. 

The proliferation of smart meters and the increasing 

availability of high-frequency data have opened new avenues 

for improving STLF. The use of big data analytics in STLF 

has been explored by several researchers, focusing on 

integrating large-scale datasets and developing real-time 

forecasting models.  

In a study by Li et al. [18], the authors utilized big data 

analytics to process and analyze vast amounts of load and 

weather data, demonstrating that real-time data integration 

significantly enhances the accuracy of STLF. The study 

employed a big data platform based on Apache Spark to 

handle the computational demands of processing high-

frequency data, showcasing the feasibility of real-time load 

forecasting in modern power systems. This research 

emphasizes the importance of scalable and efficient data 

processing frameworks in the era of big data. 

Moreover, the role of feature selection and dimensionality 

reduction techniques in handling large datasets has been a key 

focus. Bezerra et al. [19] proposed a feature selection method 

based on mutual information and principal component 

analysis (PCA) to reduce the dimensionality of input data 

while retaining the most informative features. Their approach 

demonstrated that carefully selecting and transforming input 

features leads to more accurate and computationally efficient 

forecasting models. 

Subbiah and Chinnappan [20] proposed RMR-HFS-

LSTM, a deep learning model combining Long Short-Term 

Memory (LSTM) with hybrid feature selection, to improve 

short-term load forecasting accuracy. Integrating filter 

(RReliefF, mutual information) and wrapper (RFE) methods 

reduces dimensionality and overfitting. Experiments on 

European electricity data show that RMR-HFS-LSTM 

outperforms MLP and RNN in MAPE and RMSE metrics. 

Neeraj et al. [21] introduce the Singular Spectrum 

Analysis-Long Short-Term Memory (SSA-LSTM) model for 

electrical load forecasting, leveraging signal processing to 

address the challenges of noisy and irregular data. SSA, a 

signal processing technique, is used to filter out noise from 

skewed load series, and the processed data is then used by the 

LSTM model for accurate forecasting. Evaluated using five 

datasets from the Australian Energy Market Operator 

(AEMO), SSA-LSTM outperforms several state-of-the-art 

models, including persistence, AR, ARMAX, SVR, RF, 

ANN, DBN, and others, in terms of RMSE and MAPE for 

both half-hourly and one-day ahead load forecasting. 

Despite the advancements in STLF, several challenges 

remain. One of the main challenges is handling uncertainty 

and variability in load data, particularly with the increasing 

penetration of renewable energy sources. To address this, 

recent studies have explored probabilistic forecasting 

methods that provide a range of possible outcomes rather than 

a single-point estimate. For example, Jensen et al. [22] 

proposed a probabilistic forecasting framework that 

combines quantile regression with a deep learning model to 

generate prediction intervals. This approach allows grid 

operators to assess the uncertainty associated with load 

forecasts and make more informed decisions. 

Another challenge is the interpretability of complex 

machine learning models. As models become more 

sophisticated, understanding their decision-making process 

becomes increasingly difficult. Recent research has focused 

on developing interpretable models that balance accuracy 

with transparency. For instance, Moon et al. [23] introduced 

an interpretable neural network model that incorporates 

explainability techniques such as SHAP (Shapley Additive 

Explanations) values, enabling stakeholders to understand the 

contribution of each input feature to the final forecast. 

Research gaps that could be handled using a hybrid 

method include: 

Improving prediction accuracy with complex patterns: 

load forecasting needs to handle complex patterns such as 

seasonality, holidays, and unusual demand spikes. Simple k-

NN models may struggle with these intricate patterns, 

especially if the data is sparse or noisy. LMNN can help by 

optimizing the distance metric, focusing on finding relevant 

neighbors even in complex, non-linear relationships. By 

applying LMNN, the hybrid model can better capture 

intricate demand patterns and improve forecasting accuracy. 

Noise reduction and robustness: load forecasting data can 

be noisy, with missing values or sensor errors. k-NN models 

may be sensitive to noise, leading to inaccurate predictions. 

LMNN's ability to learn a robust distance metric can reduce 

the effect of noisy data by adjusting the space in which k-NN 

operates. The hybrid model can better handle noise and 

outliers, increasing the robustness of the forecasting model. 

Handling non-linear relationships: load forecasting often 

involves non-linear relationships between input features (e.g. 

time of day and consumer behavior). k-NN is typically better 

suited for linear relationships and can struggle with non-
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linearities. LMNN can be used to learn a more flexible 

distance metric that captures non-linear relationships between 

the features. This hybrid method would allow the k-NN 

algorithm to better handle complex, non-linear dependencies 

in the data. 

Adaptability to dynamic and evolving data: Load patterns can 

evolve due to changes in consumer behavior, economic 

conditions, or climate. Traditional k-NN models can struggle 

to adapt to such dynamic changes without retraining the entire 

model. By incorporating LMNN into the hybrid approach, the 

model can more effectively adapt to changes in the 

underlying distribution of the data, as LMNN adjusts the 

distance metric based on new patterns in the data. This allows 

the hybrid model to adjust and improve over time 

dynamically. 

In summary, short-term load forecasting has seen 

significant advancements over the past five years, driven by 

adopting machine learning and deep learning techniques, 

developing ensemble and hybrid models, and integrating big 

data analytics. However, challenges such as handling 

uncertainty, improving model interpretability, and scaling to 

real-time applications remain active research areas. 

Continued efforts in these directions are essential for 

enhancing the reliability and efficiency of STLF in modern 

power systems. 

III MATERIALS AND METHODS 

A. The k-NN Algorithm 

One popular method for classifying data is the k-NN 

classification algorithm. One of the most fundamental 

concepts in classification is used by the k-NN algorithm [24]. 

Based on supervised learning, this approach is among the 

earliest for broad and non-parametric classification. This 

strategy aims to find the closest k data available from the 

training data. The new instance's distance from the training 

instance set is first determined. Next, the matching class of 

this instance is predicted by considering k members from the 

new instance's closest neighbors. The sample size, the choice 

of distance metric, and the value of k are the three main 

variables that affect the k-NN algorithm's performance. The 

choice of the distance metric significantly impacts the 

algorithm's accuracy. One of the primary needs of the k-NN 

method is the ability to measure the distance between two 

data points. The objective of distance metric learning is to 

derive the distance function (similarity) from the data such 

that the logically similar data move toward each other while 

the illogically similar data move away. Many learning 

algorithms require a metric to calculate the distance or 

similarity between objects. The distance between objects can 

be determined using a variety of distance metrics, including 

the Cosine, Manhattan, and Euclidean distances. However, 

these metrics are not appropriate for every application, and a 

more accurate metric can be obtained using the training data 

[25]. Metric learning techniques have emerged as a result of 

this. By using training data with concepts and meanings that 

are comparable to one another, we want to determine the 

distance function. Different data sets are kept apart from one 

another. Metric learning techniques, like k-NN or k-means 

clustering classification, are typically applied as pre-

processing for machine learning and pattern recognition 

algorithms. 

The k-NN algorithm consists of the following steps:  

Step 1: Select the value of k. 

Step 2: Calculate the distance of k number of neighbors. 

Step 3: Sort distances in ascending order. 

Step 4: Using the calculated distance, select the k closest 

neighbors. 

Step 5: Determine how many data items are in each 

category among these k neighbors. 

Step 6: Assign to the category where the neighbor count is 

at its highest. 

 
Fig. 1. The k-NN classifier. 

 

The k-NN algorithm must determine how far the predicted 

data point is from the known data point to choose the nearest 

k labeled data, {𝑥1, 𝑥2, … , 𝑥𝑘}, where 𝑥1 stands for the known 

point that is closest to the predicted point; 𝑥2 stands for the 

known point that is the second closest to the predicted point, 

and so on. Hence, the k-NN algorithm can be used as: 

𝑠𝑖 =
1

𝑘
× ∑ 𝑠𝑥𝑗

𝑘

𝑗=1

 (1) 

where 𝑠𝑖 is the ith predicted value and 𝑠𝑥𝑗
 is the predicted 

value of the jth closest known point (𝑥𝑗). The k-NN classifier 

is shown in Fig. 1. 

 

B. Distance Learning Method and LMNN 

Researchers have suggested several techniques to obtain 

distance metric learning over the past few decades [26]. 

Replacing the Euclidian distance, which does not distinguish 

between different data features, can significantly increase the 

accuracy. There are linear methods and non-linear methods 

for distance metric learning.  

Assume a set of 𝑋 = {𝑥𝑖}∁𝑅𝑛 of data points, the general 

Mahalanobis distance is as follows: 

𝐷2(�⃗�𝑖 , �⃗�𝑗) = (�⃗�𝑖 − �⃗�𝑗)
𝑇

M(�⃗�𝑖 − �⃗�𝑗) (2) 

where M can be any positive matrix that is found by 

optimization.  

Mahalanobis distance is taught using the LMNN metric 

learning method in the k-NN classifier [27]. This learning 

method places a large distance between dissimilar data and its 

k neighbors who share the same label. A group of k nearest 

neighbors with the same label are considered the target data 

in the LMNN method for the training data xi. It is necessary 

that among the k nearest neighbors of the data xi, all labels are 

different to carry out a successful k-NN classification. As a 

result, when using the LMNN method, a zone is considered 

for the data xi, which includes both the target data and a safety 

margin. According to this definition, similar data placed in 

this zone are hard to categorize and are regarded as noisy data. 

The amount of noisy data in the LMNN learning method 

needs to be reduced by the learning method. 

 

C. Genetic Algorithm and Gradient Descent 

Genetic algorithms [28] are evolutionary algorithms that 

search and find optimal solutions. It searches a multi-

dimensional search space for the best answer. Genetic 

algorithms produce a set that contains various solutions 

instead of just one. Finding a suitable solution is more likely 

when various points are considered. Every single one of them 

is a vector in the multidimensional space. For problem-
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solving, genetic algorithms simulate an evolutionary 

continuum in a computer environment. Unlike other 

optimization methods, they develop a set of these structures 

rather than just one structure for a given solution. 

A gene includes each component of an individual. Genetic 

algorithm processes on an evolutionary continuum to 

determine the composition of the population as a whole. A 

population of chromosomes that have been chosen at random 

typically serves as the starting point for the genetic algorithm. 

These chromosomes serve as models for potential solutions 

to the problem. To simulate the natural reproduction and 

mutation of species, it employs two main operators: crossover 

and mutation. The fittest chromosomes are favored when 

choosing which ones to combine and keep alive. 

Gradient descent [29] is a general algorithm usually used 

to find the optimal solution in an unconstrained multivariate 

differentiable function. Gradient descent is not only used in 

linear regression but can also be used in many machine 

learning subjects. In general, this algorithm applies to infinite 

parameters. 

If we start from a point in the function, the fastest way to 

reach the optimal point is to move along the path with the 

greatest slope. The gradient of the function, which is the 

partial derivatives of the function with respect to the variables 

𝜃0, 𝜃1, … , 𝜃𝑛 indicates the greatest slope. Therefore, the 

formulation of the problem is as follows: 

We have a cost function 𝐽(𝜃0, 𝜃1, … , 𝜃𝑛) and we want to 

minimize 𝜃0, 𝜃1, … , 𝜃𝑛. The algorithm starts with the initial 

𝜃0, 𝜃1, … , 𝜃𝑛. The value of 𝜃0, 𝜃1, … , 𝜃𝑛 is changed towards 

better results. The change of 𝜃0, 𝜃1, … , 𝜃𝑛 is proportional to 

the partial derivatives of the cost function (𝜃0, 𝜃1, … , 𝜃𝑛). 

Changing the value of 𝜃0, 𝜃1, … , 𝜃𝑛 continues until 

𝐽(𝜃0, 𝜃1, … , 𝜃𝑛){𝜃𝑖: = 𝜃𝑖−∝∗ 𝜕 ∂𝜃𝑖⁄  𝐽(𝜃0, 𝜃1, … , 𝜃𝑛)} 

reaches the lowest point possible. The final solution may be 

the local optimum point instead of the global optimum point. 

In each iteration of the algorithm, the values of 𝜃0, 𝜃1, … , 𝜃𝑛 

are updated simultaneously according to the partial 

derivatives of the cost function with respect to the parameters. 

α is called the learning rate and controls the length of steps 

the algorithm takes in each iteration. Usually, its value is 

between 0 and 1. If α is chosen to be very small, the 

convergence happens later because the gradient descent 

moves towards the minimum point with smaller steps. If α is 

chosen large, the value of 𝐽(𝜃) may not decrease with each 

iteration or it may not reach convergence. Often, the learning 

rate is set at 0.1 [30]. 

 

D. Encoding Scheme 

In the context of the STLF method using LMNN and GA, 

an effective encoding scheme for representing potential 

solutions is crucial. This encoding determines how candidate 

solutions are structured and manipulated within the genetic 

algorithm, directly influencing the optimization process and 

the accuracy of the final forecast. Given the need to optimize 

the transformation matrix L in the LMNN framework, the 

chromosome representation must capture the essential 

features of this matrix while allowing for efficient genetic 

operations such as crossover and mutation. 

The chromosome in this context represents a candidate 

transformation matrix L, which plays a pivotal role in shaping 

the feature space and influencing the accuracy of the nearest 

neighbor calculations. For a dataset with d features, the 

transformation matrix L is a d×d matrix. The matrix is 

flattened into a single vector to represent this matrix within 

the genetic algorithm. This vector then serves as the 

chromosome, where each element corresponds to a specific 

entry in the matrix L. 

For example, consider a scenario where the input data has 

three features d = 3. The transformation matrix L would be a 

3×3 matrix with nine elements. This matrix is flattened into a 

vector of length nine in the chromosome representation. The 

vector is structured as {l11, l12, l13, l21, l22, l23, l31, l32, l33}, 

where each lij represents a specific entry in the matrix. This 

encoding ensures that the entire structure of the 

transformation matrix is captured in the chromosome, 

allowing the genetic algorithm to explore the full space of 

possible transformations. 

Within the genetic algorithm, the chromosome undergoes 

various operations that drive the optimization process. 

Crossover is one of the primary mechanisms for generating 

new candidate solutions by combining parts of two parent 

chromosomes. In the context of this flattened matrix 

representation, a single-point crossover might involve 

selecting a point along the vector and swapping the 

subsequent elements between two parent chromosomes. 

Alternatively, a two-point crossover might involve selecting 

two points and exchanging the genes between these points. 

These crossover operations allow the genetic algorithm to 

recombine different parts of the transformation matrices, 

potentially leading to better-performing solutions. 

Mutation is another critical operation that introduces 

variability into the population, helping the algorithm avoid 

local minima. In the context of this method, a uniform 

mutation might involve randomly selecting a gene (an 

element of the matrix L and altering its value within a 

predefined range. This could mean adding or subtracting a 

small, fixed amount. A more sophisticated approach might 

involve Gaussian mutation, where a small, normally 

distributed random value is added to a selected gene. This 

type of mutation allows for subtle adjustments to the 

transformation matrix, which can fine-tune the model's 

performance. 

The fitness of each chromosome, or candidate 

transformation matrix, is evaluated based on how well it 

minimizes the cost function defined in our method (equation 

(6)). The cost function reflects the performance of the 

transformation matrix in terms of how effectively it separates 

different classes in the feature space, thus directly impacting 

the load forecasting accuracy. Chromosomes that result in a 

lower cost function value are deemed more fit and are more 

likely to be selected for crossover and mutation in subsequent 

generations. 

It might be necessary to impose constraints during the 

optimization process to ensure that the transformation matrix 

remains numerically stable and does not lead to overfitting. 

One common approach is regularizing the matrix L, perhaps 

by normalizing its Frobenius norm. This constraint would 

prevent the elements of L from becoming too large, which 

could otherwise lead to instability in the model. 

Regularization helps maintain a balance between model 

complexity and generalization, ensuring that the final 

solution performs well not only on the training data but also 

on unseen test data. 

In summary, the chromosome representation in this Short-

Term Load Forecasting method is a flattened vector of the 

transformation matrix L, capturing all the essential elements 

in a format suitable for genetic manipulation. The genetic 

algorithm operates on these chromosomes through crossover 
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and mutation, exploring the space of potential solutions and 

optimizing the transformation matrix to minimize the cost 

function. This process is guided by fitness evaluation, with 

constraints like normalization applied to ensure the stability 

and effectiveness of the resulting model. 

 

E. Proposed LMNN Classifier 

Assuming a set of points x1, x2, x3,…,xn which labels are yi 

(i=1,2,…,n). The goal is to learn a linear transformation L 

leading to the following transformed distance: 

𝐷2(�⃗�𝑖 , �⃗�𝑗) = ‖L(�⃗�𝑖 − �⃗�𝑗)‖
2

= (�⃗�𝑖 − �⃗�𝑗)
𝑇

L𝑇L(�⃗�𝑖 − �⃗�𝑗) 
(3) 

where L is a d×d matrix, and d is the dimension of the input 

vector. For each input xi, k target neighbors are selected which 

are k inputs with the same label as xi. The target neighbors 

can be identified as the k nearest neighbor with the same label 

as xi. Fig. 2 illustrates the LMNN algorithm. 

  

 
Fig. 2. Illustration of Large Margin Nearest Neighbor algorithm. 

 

There are two terms in our objective function for the 

distance metric. The first term seeks to shorten the distance 

between any given data and its immediate neighbors. In 

contrast, the second term seeks to lengthen the distance 

between any given data and all other data not belonging to the 

same class. 

These two terms compete because reducing the distance 

between samples reduces the first part while increasing it 

reduces the second. The large separation between each input 

and its target neighbors is penalized in the cost function's first 

section. The sum of squares of this distance is as follows 

when the input space is transformed linearly: 

𝜀1(L) = ∑‖L|�⃗�𝑖 − �⃗�𝑗|‖

𝑗→𝑖

2

 (4) 

where L is a d×d matrix d is the dimension of the input 

vector, and �⃗�𝑖 and �⃗�𝑗 are inputs. 

In the linear transformation of the input space, this 

expression generates a pulling force that pulls the target's 

surrounding neighbors toward it. The expression mentioned 

above does not penalize the large distance between all of the 

data bearing the same label, only the large distance between 

the inputs and their target neighbors. The second case is being 

penalized on purpose. Thus, the way that our method differs 

from many other distance metric approaches is that it 

penalizes great distances between neighbors.  

The second part of the cost function penalizes the short 

distance between data with different labels: 

𝑡ℎ𝑒 𝜀2(L) = ∑ ∑(1 − 𝑦𝑖𝑙) [1

𝑙𝑖,𝑗→𝑖

+ ‖L(�⃗�𝑖 − �⃗�𝑗)‖
2

− ‖L(�⃗�𝑖 − �⃗�𝑙)‖2]
+

 

(5) 

where   ( )max 0,z z
+
=  is the hinge loss. L is a d×d 

matrix, and �⃗�𝑖 and �⃗�𝑗 are inputs. If yi=yl then yil=1, otherwise 

yil=0; 

The goal is to optimize the cost function to fine better 

neighbors and determine the data class. Our cost function 

becomes: 

 𝑐𝑜𝑠𝑡(L, 𝑋) = (1 − 𝜇)𝜀1(L) + 𝜇𝜀2(L) 

             = (1 − 𝜇) ∑‖L|�⃗�𝑖 − �⃗�𝑗|‖

𝑗→𝑖

2

+ 𝜇 ∑ ∑(1 − 𝑦𝑖𝑙) [1

𝑙𝑖,𝑗→𝑖

+ ‖L(�⃗�𝑖 − �⃗�𝑗)‖
2

− ‖L(�⃗�𝑖 − �⃗�𝑙)‖2]
+

 

(6) 

where the positive constant μ changes the importance of 

those two terms. 

LMNN uses semi-definite programming (SDP) to 

transform the distance metric learning problem into a convex 

problem [31]. The SDP is: 

Minimize ∑ 𝜂𝑖𝑗

𝑖𝑗

(�⃗�𝑖 − �⃗�𝑗)
𝑇

M(�⃗�𝑖 − �⃗�𝑗)

+ 𝑐 ∑ 𝜂𝑖𝑗

𝑖𝑗

(1 − �⃗�𝑖𝑙)𝜀𝑖𝑗𝑙 
(7) 

where M is the semi-definite matrix of the Mahalanobis 

metric, c is the control variable and 𝜀𝑖𝑗𝑙is the slack variable 

for hinge loss. 

With conditions: 

(�⃗�𝑖 − �⃗�𝑙)𝑇M(�⃗�𝑖 − �⃗�𝑙) − (�⃗�𝑖 − �⃗�𝑗)
𝑇

M(�⃗�𝑖 − �⃗�𝑗) ≥ 1 − 𝜀𝑖𝑗𝑙  

𝜀𝑖𝑗𝑙 ≥ 0 

M ≻ 0  

Equation (6)'s cost function expressed in terms of L is not 

convex. Elements of L employ the gradient descent approach 

to minimize this function. However, this strategy is prone to 

becoming stuck in local minima. The outcomes of this 

gradient descent method typically rely on initial L estimates. 

As a result, they might not be applied to many problems or 

applications. In order to overcome this issue and optimize the 

objective function for more accurate classification, first, we 

use a genetic algorithm to find the global optimal range of the 

objective function, and then by using the gradient descent 

method, it is precisely determined by obtaining the optimal 

point of the parameter L in the cost function. 

The suggestion to increase the efficiency of the global 

optimization methods is to combine the local optimization 

methods with the global one, which has the advantage of 

increasing the speed along with dodging local optima traps. 

After L is obtained, the distance between the test data and the 

neighboring points is determined to determine the similarity, 

and it is calculated based on the type of neighbors of the data 

set. 

Our method can be summarized as follows: first, we 

choose the appropriate k and divide the dataset into training 

and test data. The cost function is defined using equation (6). 

Then, using the genetic algorithm, Lg is optimized. The first 
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step of the genetic algorithm is to find an initial population 

and the rate of mutation and crossover. Until the end criterion 

is met, parents are chosen, crossover and mutation are carried 

out, a new generation of offspring is created, and their fitness 

value is calculated. These steps are repeated until the semi-

optimum Lg is found. The optimum L is obtained by gradient 

descent. Initially, learning rate α is defined, and L0=Lg is set. 

Steps of gradient descent are repeated until optimum L is 

found. Then, the distance between the test and all training 

data is calculated using equation (3).  

 

F. Short-Term Load Forecasting Based on LMNN 

The specified implementation process includes the 

following steps to create the short-term load forecasting 

model based on the suggested LMNN algorithm: (1) 

Choosing the value of k. The majority of the k nearest objects 

for a sample (S) in its associated feature space belonged to a 

particular category, and so did the sample. Then, based on the 

traits of the objects in this category, the suitable nearest 

neighbor parameter, k, is chosen. Because of these traits, 

patterns of similar electricity consumption will undoubtedly 

clump together in a particular area; (2) Building the output set 

and sample set. Calculate the distance between the predicted 

data point and the known data point based on the random 

distribution (to ensure that all electricity consumptions are 

considered, not just the local optima). The weight for each 

predicted data point is then equal to 1/distance. Ultimately, it 

would be possible to obtain the predicted value for each data 

point. (3) Analysis of forecasting accuracy. The root mean 

square error (RMSE) and the normalized mean square error 

(NMSE) are used to assess the forecasting accuracy [32]. 

Equations (8) and (9) are used to calculate them, respectively. 

The proposed model's reliability and accuracy would then be 

further verified using the forecasting results computed by the 

MATLAB simulation and the actual data values. 

 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1
 (8) 

NMSE =
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (9) 

 

where 𝑦𝑖  stands for the actual load value and �̂�𝑖  stands for 

the ith predicted load value. n is the total number of predicted 

loads, and �̅� is the mean value of n actual load values. The 

data are divided into two samples: a quarterly sample and a 

monthly sample. In the quarterly sample, the first two months' 

data serve as samples that predict the third month's load 

values. In the monthly sample divided up by month, the data 

from the first three weeks are used to forecast the last week's 

load. 

The flowchart of the algorithm is illustrated in Fig. 3, and 

the pseudocode of our method is as follows: 

 

  

 
Fig. 3. Flowchart of our proposed method 

 
 

# Pseudocode for Short-Term Load Forecasting using LMNN and Genetic Algorithm 

 

# Step 1: Initialize parameters 

Initialize k  # Number of nearest neighbors 

Divide the dataset into training_data and test_data 

Define cost function based on equation (6) 

 

# Step 2: Genetic Algorithm to optimize Lg 

# Initialize Genetic Algorithm parameters 

Initialize population_size  # Size of the population 

Initialize mutation_rate  # Rate of mutation 

Initialize crossover_rate  # Rate of crossover 

Initialize max_generations  # Maximum number of generations 

Initialize Lg_population with random values 
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# Step 3: Main Genetic Algorithm loop 

for generation in range(max_generations): 

    # Evaluate fitness of each individual in the population 

    for each individual in Lg_population: 

        Calculate fitness value of individual using cost function 

    # Selection: Choose parents for crossover 

    parents = Select parents from Lg_population based on fitness values 

    # Crossover: Generate new offspring 

    offspring_population = [] 

    while size of offspring_population < population_size: 

        parent1, parent2 = Randomly select two parents from parents 

        child1, child2 = Perform crossover on parent1 and parent2 with 

probability crossover_rate 

        offspring_population.append(child1) 

        offspring_population.append(child2) 

    # Mutation: Apply mutation to offspring 

    for each offspring in offspring_population: 

        Apply mutation to offspring with probability mutation_rate 

    # Replace the old population with the new population 

    Lg_population = offspring_population 

    # Check termination condition (e.g., max generations or convergence) 

    if termination_condition_is_met: 

        break 

 

# Step 4: Obtain semi-optimum Lg 

Lg = Best individual in the final Lg_population 

 

# Step 5: Gradient Descent to find the optimum L 

Initialize learning_rate α 

Set L0 = Lg 

Initialize tolerance and max_iterations for gradient descent 

 

# Step 6: Main Gradient Descent loop 

for iteration in range(max_iterations): 

    # Calculate the gradient of the cost function with respect to L 

    gradient = Calculate gradient of cost function at L0 

    # Update L 

    L_new = L0 - α * gradient 

    # Check for convergence 

    if |L_new - L0| < tolerance: 

        break 

    # Update L0 for the next iteration 

    L0 = L_new 

# The optimal transformation matrix L is found 

L_optimal = L_new 

 

# Step 7: Calculate the distance between test data and all training data using 

equation (3) 

for each test_point in test_data: 

    distances = [] 

    for each training_point in training_data: 

        distance = Calculate distance between test_point and training_point 

using equation (3) and L_optimal 

        distances.append(distance) 

    # Sort distances to find the nearest neighbors 

    nearest_neighbors = Sort distances and select the k nearest neighbors 

 

# Step 8: Use the nearest neighbors for Short-Term Load Forecasting 

# Forecast the load using the nearest neighbors' information 

forecasted_load = Predict load based on nearest_neighbors 

 

 

Here’s a detailed breakdown of the proposed algorithm: 

Step 1: Data Preparation 

Dataset Division: The dataset is divided into training and 

test sets. The training set is used to train the model, while the 

test set is used to evaluate its performance. 

Step 2: Selection of k 
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Choosing k: The value of k, which represents the number 

of nearest neighbors to consider, is selected. This is a crucial 

parameter that affects the performance of the k-NN algorithm. 

Step 3: Cost Function Definition 

Cost Function: A cost function evaluates the model's 

performance. This function typically measures the error 

between the predicted and actual values. 

Step 4: Genetic Algorithm Optimization 

Initial Population: The genetic algorithm starts with a 

randomly generated population of potential solutions 

(chromosomes), each representing a set of parameters for the 

distance metric. 

Fitness Evaluation: Each chromosome is evaluated based 

on its fitness, which is determined by how well it minimizes 

the cost function. 

Selection, Crossover, and Mutation: The fittest 

chromosomes are selected to create a new generation. 

Crossover and mutation operators are applied to introduce 

variability and explore new solutions. 

Iteration: This process is repeated until a stopping criterion 

is met, such as a maximum number of generations or 

convergence of the population. 

Step 5: Gradient Descent Optimization 

Initial Parameters: The best parameters identified by the 

genetic algorithm are used as the starting point for gradient 

descent. 

Learning Rate: A learning rate (α) is defined to control the 

step size during optimization. 

Parameter Update: The parameters are updated iteratively 

using the gradient of the cost function until the optimal 

parameters are found. 

Step 6: Distance Calculation 

Mahalanobis Distance: The optimized parameters are used 

to calculate the Mahalanobis distance between the test data 

and the training data. This distance metric accounts for the 

correlations between different features, making it more 

effective than traditional metrics like Euclidean distance. 

Step 7: Classification and Forecasting 

Classification: The algorithm is applied using the 

optimized distance metric. The algorithm identifies the k 

nearest neighbors of the test instance and assigns a category 

based on the majority class among these neighbors. 

Forecasting: The final output is the forecasted load value 

based on the classification results. 

IV. RESULTS and DISCUSSION 

Simulations are implemented using MATLAB. The 

learning rate is set to 0.1, and µ is set to 0.7. For the genetic 

algorithm, the population size is 30, and the number of 

generations is 250 through trial and error to balance accuracy 

and speed. Crossover and mutation rates are set to 0.8 and 

0.05, respectively. The selection type is a roulette wheel, the 

crossover type is a random pair and random point, and the 

mutation type is a random gene at a random chromosome. 

The gradient descent stop threshold is set to 0.0001. The  

hourly electricity load data were obtained from the 

National Electricity Market of Australia for the entire 2021 

calendar year. Load data encapsulates recurring patterns and 

is independent of weather conditions, which might not always 

be available or reliable. 

 

A. Analysis for Different Values of k 

Parameter k is a parameter for the LMNN algorithm that is 

used to classify samples based on the category label that 

occurs the most frequently among the k training samples 

closest to the chosen data point. The classification accuracy 

will decrease if the value of k is either too high or too low. 

When the value of k is low, the model is more complex, 

making it more likely to suffer from over-fitting, and the 

errors rise as a result. On the other hand, if k has a large value, 

the estimation errors would be reduced, but the errors would 

also increase, and the training data points' distance from the 

input data point would also impact the forecasting outcomes. 

As a result, the value of k is frequently set to a low value in 

general applications of the LMNN algorithm. 

This study used different values to evaluate the 

experimental findings and choose an appropriate value for k. 

For instance, Tables I and II show, respectively, the 

determined suitable values of k for monthly samples and 

quarterly samples. Values above 3 have been shown to 

degrade the results overall. 

 

TABLE I 
 Error Comparison for Various Values of k in Monthly Samples (Measured 

in Megawatts). 

Month 
k=1 k=2 k=3 

RMSE NMSE RMSE NMSE RMSE NMSE 

1 981.26 0.45 673.93 0.21 918.19 0.47 

2 422.13 0.09 394.30 0.08 475.55 0.14 

3 1243.86 1.09 732.52 0.38 1038.65 0.87 

4 477.60 0.23 500.94 0.25 536.77 0.29 

5 399.31 0.14 477.57 0.20 487.05 0.20 

6 347.79 0.06 264.86 0.03 375.29 0.07 

7 657.47 0.37 673.81 0.39 726.12 0.45 

8 1318.91 1.43 949.29 0.74 897.15 0.66 

9 538.11 0.32 558.66 0.35 637.55 0.59 

10 2204.65 1.04 2167.92 1.00 2166.19 0.99 

11 395.15 0.12 368.92 0.09 264.19 0.05 

12 1523.11 1.02 1272.35 0.71 1277.71 0.72 

 

TABLE II 
 Error Comparison for Various Values of k in Quarterly Samples (Measured 

in Megawatts). 

Season 
k=1 k=2 k=3 

RMSE NMSE RMSE NMSE RMSE NMSE 

1 998.92 0.55 986.24 0.53 993.68 0.54 

2 1648.50 0.64 1574.99 0.52 1677.41 0.59 

3 572.34 0.17 636.54 0.21 755.07 0.29 

4 1320.92 1.14 936.19 0.58 855.62 0.48 

 

It shows that when k was set to 2, the error is reasonably small 

for both cases. 

The proposed LMNN model performed the forecasting 

processes and the associated results. The load data were 

obtained from the National Electricity Market of Australia for 

the year 2021. The data for this paper were gathered by 

dividing each day into three equal parts and averaging each. 

The electricity forecasting value for one week (21 eight-hour 

splits) obtained from the LMNN model is shown in Fig. 4. 
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Fig. 4. Forecasting results for the last week of each month. 

 

 

Fig. 4 demonstrates that overall, there is a reliable trend 

between the actual data and the forecasted data. It shows that 

the proposed LMNN model is appropriate for short-term 

prediction despite some errors. Each day starts with the 

lowest load at the first third of the day, which increases in the 

middle of the day, and then comes back down at the last third 

of the day while staying above the first third, which creates 

repeated patterns in these fig.s. 

 

B. Forecasting Results Comparison 

The Autoregressive-Moving Average model [33] and the 

Back-Propagation Neural Network model [34] were chosen 

for comparison analysis to show the superiority of the 

proposed model. Table III displays the results of the 

comparison between models using root mean square error 

(RMSE), normalized mean square error (NMSE), mean 

absolute error (MAE), and mean absolute percentage error 

(MAPE) [35].  

Time series data analysis and forecasting are done 

statistically using the Autoregressive Moving Average 

(ARMA) model. It consists of moving average (MA) and 

autoregression (AR). An observation in a time series and a 

specific number of lagged observations (previous values) are 

related to an autoregressive component. It suggests that the 

series' current value is a linear combination of its earlier 

values. The moving average component represents the 

relationship between the current observation and the residual 

errors from a moving average model applied to lag 

observations. An ARMA model seeks to represent the 

temporal dependencies in a time series dataset by merging 

these two elements. Various time series data, including stock 

prices, temperature variations, economic indicators, and 

more, can be modeled and forecasted using ARMA models. 

Backpropagation Neural Network (BPNN) is an artificial 

neural network designed to learn and recognize patterns in 

data. It comprises interconnected nodes arranged in layers, 

allowing data to move from input to output nodes via hidden 

layers. Using a training algorithm known as backpropagation, 

BPNNs gradually minimize errors over several iterations by 

adjusting the network's weights and biases in response to 

variations between predicted and actual outputs. Because of 

their feedforward network architecture, BPNNs can perform 

well in various tasks like pattern recognition, regression, and 

classification. Because of their capacity to represent intricate 

relationships within data, they find applications in a wide 

range of industries, including finance, healthcare, image and 

speech recognition, and more. The number of layers was 

chosen as 3 with 10 neurons, as recommended by the original 

article. The Tansig and Logsig functions were also chosen for 

the hidden and output layers, respectively, for the same 

reason. 
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TABLE III 

Comparison of Four Forecasting Models (LMNN, k-NN, ARMA, and BPNN). Unit: MW. 

 

Month 
LMNN k-NN 

RMSE NMSE MAE MAPE (%) RMSE NMSE MAE MAPE (%) 

1 649.91 0.38 1.15 4.29 946.28 0.43 1.30 6.58 

2 379.60 0.71 1.35 3.88 407.08 0.09 1.84 6.33 

3 706.40 0.33 1.09 3.97 1199.52 1.05 1.21 5.97 

4 483.08 0.96 1.08 4.39 460.57 0.22 1.20 8.81 

5 460.55 0.09 1.05 4.18 385.08 0.13 1.14 6.32 

6 300.88 0.69 1.24 4.57 335.39 0.06 1.39 6.85 

7 649.79 0.38 1.02 4.36 634.03 0.35 1.14 6.64 

8 915.45 0.71 0.98 4.15 1271.89 1.38 1.03 7.33 

9 538.74 0.33 0.94 3.94 518.92 0.31 1.05 5.91 

10 2090.63 0.96 1.47 4.87 2126.05 1.00 1.64 7.72 

11 355.77 0.09 1.22 4.45 381.06 0.11 1.36 9.17 

12 1226.99 0.69 1.12 4.08 1468.80 0.99 1.15 6.12 

Month 
ARMA BPNN 

RMSE NMSE MAE MAPE (%) RMSE NMSE MAE MAPE (%) 

1 1116.87 0.42 1.45 16.87 2509.89 0.45 1.91 22.50 

2 1083.87 0.61 1.36 15.47 2343.75 0.64 1.90 21.38 

3 867.28 0.39 1.22 14.64 1899.53 0.63 1.49 18.72 

4 808.59 0.38 1.13 14.20 2694.52 0.51 2.05 25.61 

5 818.04 0.43 1.18 13.42 1397.62 1.05 1.23 14.28 

6 1138.03 0.53 1.63 16.48 4405.28 0.54 3.36 33.77 

7 835.01 0.52 1.19 12.34 1498.19 0.45 1.12 12.21 

8 924.46 0.45 1.01 11.77 1565.69 0.64 1.30 14.92 

9 725.88 0.40 1.01 12.44 1547.61 0.63 1.28 15.40 

10 1730.04 0.39 1.85 99.91 3296.65 0.51 2.26 87.41 

11 958.97 0.32 1.25 14.27 2612.32 1.05 1.76 19.50 

12 1375.49 0.37 1.20 15.54 1651.78 0.54 1.25 17.91 

V.CONCLUSION 

This study built a new short-term load forecasting model 

using the large margin nearest neighbor algorithm. This 

proposed model was then used to perform the actual short-

term load forecasting task. It would be very beneficial to 

suggest new load prediction techniques and enhance existing 

ones. Conventional techniques frequently rely significantly 

on the approach taken to determine how similar two samples 

are. In fixing the LMNN's premature convergence issue and 

refining the cost function to determine the separations 

between data, we also introduced a cost function to compute 

data similarities. The genetic algorithm was utilized to narrow 

the solution space's range, and gradient descent was then 

employed to determine the cost function's ideal parameter. 

The following are a couple of findings: (1) It is evident that 

the proposed LMNN model has higher forecasting accuracy 

demonstrated via forecasting error comparison. (2) The 

proposed model's ability to predict is superior to that of the 

ARMA model and the BPNN model when compared. It can 

better meet the development needs of today's grids and 

control systems. 

Innovations in our proposed approach include: 

• Hybrid Optimization Approach: The integration of 

genetic algorithms with gradient descent in the 

LMNN model addresses the limitations of 

traditional algorithms, improving adaptability and 

performance. 

• Distance Learning Enhancement: The optimization 

of the Mahalanobis distance metric within LMNN 

allows for better classification and forecasting of 

electricity loads, accommodating dynamic 

consumption patterns. 

• Real-Time Data Integration: Utilization of data 

analytics for processing load data enhances 

forecasting accuracy, showcasing the feasibility of 

real-time applications in modern power systems. 

• Local Optima Avoidance: The combination of GA 

and gradient descent helps avoid local optima traps, 

ensuring a more reliable search for the best 

parameters. 

• Adaptability: The method is designed to adapt to 

dynamic energy consumption patterns, making it 

suitable for various modern power systems. 
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