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      Abstract -- In today's world, improving the quality and 

clarity of videos has become increasingly important, 

particularly in the fields of surveillance, medicine, and imaging 

technologies. Traditional super-resolution methods primarily 

focus on the full reconstruction of video frames, which poses 

challenges in preserving fine details and complex structures. 

This paper introduces a novel approach based on parallel deep 

networks, effectively enhancing video quality by dividing video 

frames into three separate input branches: raw images, outputs 

based on Hidden Markov Random Fields (HMRF), and 

temporal images. The method also leverages techniques such as 

residual learning and random patching within a unified 

framework that combines spatial segmentation (HMRF) and 

temporal information. This integration allows the model to 

better capture spatial and temporal dependencies, leading to 

more accurate and efficient video frame reconstruction. To 

better focus on high-frequency details and mitigate the 

vanishing gradient problem, residual learning is employed, 

enabling the network to estimate only the additional details 

necessary for reconstructing high-resolution images. 

Additionally, through random patching, the network training 

process is designed to emphasize critical features and intricate 

textures. Experimental results demonstrate that the proposed 

method achieves an SSIM of 0.92857 and a PSNR of 34.8617, 

offering superior clarity in video reconstruction. 

 

Index Terms-- Super-resolution, deep learning, Hidden Markov 

Random Fields, residual learning, random patching 

I.  INTRODUCTION 

he demand for high-quality video content is increasing 

across various fields, but transmitting high-resolution 

videos requires significant bandwidth and storage space. 

Therefore, video compression has been proposed as a solution 

to manage this issue, but high-quality video reconstruction 

after compression remains challenging. Enhancing the 

resolution of low-quality videos using super-resolution 

techniques has become an important research area, facing 

challenges such as balancing resolution and reducing artifacts 

in dynamic scenes. 

In real-world video super-resolution, significant 

challenges exist, including the diversity and complexity of 

degradations, which affect both inference and training 

processes. Using long-range propagation in cases of mild 

degradations may improve performance, but in the presence 

of severe degradations, it can lead to output quality 
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deterioration. Therefore, an image pre-cleaning step before 

propagation is essential to reduce noise. Using the cleaning 

module designed in [1] improves the quality and efficiency of 

the RealBasicVSR model compared to previous methods. To 

train models in real-world conditions, there is a need to 

increase data size and computational load. A random 

degradation scheme, which reduces training time by up to 

40% and uses longer sequences instead of larger batches to 

more effectively exploit temporal information, has been 

proposed. 

Video super-resolution models are generally trained on 

synthetic data. Reference [2] introduces the RealVSR dataset, 

which includes real LR-HR videos and improves the quality 

of detail recovery. The RefVSR method, presented in [3], 

uses reference videos for higher accuracy. Research in papers 

[4] and [5] emphasizes the challenges of recurrent models and 

video compression. Paper [6] addresses the role of matching 

in transformers for VSR, suggesting that patch matching, 

instead of pixel matching, leads to better performance. 

Temporal modeling in video super-resolution is of great 

importance. Some methods use optical flow or convolution to 

compensate for motion, which may add complexity to the 

model and lead to issues in certain conditions. The study [7] 

suggests calculating temporal differences between frames 

and dividing pixels into two subsets. Experiments show that 

this method performs well compared to others. Study [8] 

introduces a new transformer for compressing video super-

resolution, performing self-attention in the space-time-

frequency domain, and its results significantly outperform 

other methods. New methods for small video super-resolution 

using the Knowledge Transfer (STD) approach improve 

performance in resource-constrained conditions [9]. VISCA, 

an edge-assisted video streaming solution, combines super-

resolution and storage, significantly improving video quality 

compared to existing solutions [10]. Paper [11] presents a 

simple and effective method for super-resolving high-quality 

videos from low-resolution ones, resistant to large motions 

and offering better generalizability. Spatiotemporal deep 

neural networks have shown promising results in video super-

resolution (VSR) in recent years. Paper [12] introduces a new 

Spatio-Temporal Matching Network (STMN) that reduces 

dependency on motion estimation by working in the wavelet 

domain. This architecture includes three main components 

that help extract spatial and frequency information and 

reconstruct high-resolution frames. Paper [13] introduces a 
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Cyclic Mutual Learning Network (CycMuNet) that leverages 

mutual learning between spatial and temporal video super-

resolution and aids in high-quality video reconstruction. 

Furthermore, paper [14] presents a deep learning-based SR 

method called FOCAS that reduces computational load and 

decreases delay by 50-70%. Paper [15] introduces a 

lightweight network called ELNVSR, which extracts spatial 

information using multi-group blocks and performs well 

while maintaining a small number of parameters. Finally, 

paper [16] proposes a Matching Flow Estimation (MFE) 

module that improves alignment performance in variable 

conditions by predicting coarse positions. 

Super-resolution (SR) involves generating high-

resolution (HR) video frames from low-resolution (LR) 

frames. Paper [17] introduces the MP3D network, which uses 

3D convolutions to capture temporal correlations in LR 

frames and reduces the need for motion compensation. This 

network includes pyramid sub-networks, SR reconstruction, 

and detail refinement to enhance HR frame quality. Paper 

[18] presents a novel video super-resolution (VSR) method 

using convolutional neural networks (CNNs), which uses 

spatial and temporal information to improve reconstruction 

quality and reduce training time. It also introduces a motion 

blur compensation scheme. Paper [19] introduces a method to 

enhance the quality of encoded HEVC frames using a multi-

frame in-loop filter (MIF), improving the quality of each 

encoded frame by utilizing spatial and temporal information 

from higher-quality frames. Reference [20] discusses the 

application of deep learning in video compression, 

introducing several new tools to enhance coding efficiency. 

Reference [21] presents an innovative video compression 

model that improves video frame quality at low bitrates by 

using adaptive sampling and block patching, significantly 

enhancing video quality compared to HEVC and other 

methods. 

Overall, previous methods have made significant progress 

in the field of super-resolution and video file quality 

enhancement. However, the proposed methods have not 

simultaneously addressed various key features of a video file, 

including edge and key region detection, frame segmentation 

based on brightness change features, and dynamic and static 

object features in frames to improve performance. 

Additionally, the lack of new deep learning techniques, such 

as residual learning and random patching, can lead to the 

reduced performance of a powerful method. To address these 

challenges, this paper proposes a new method for improving 

video super-resolution. 

This paper proposes an innovative method for enhancing 

video frame quality by combining multiple image inputs and 

a parallel network architecture. This method focuses 

particularly on residual image estimation, allowing the 

network to effectively model complex, high-frequency details. 

The proposed method effectively identifies spatial and 

temporal dependencies in video frames by utilizing advanced 

techniques such as HMRF-EM for segmentation and 

integrating temporal inputs. Although the approach builds on 

existing methodologies, such as residual learning and random 

patching, the novelty lies in integrating these techniques 

within a unified framework that combines spatial 

segmentation and temporal information. This integration 

enables the model to better capture both local and global 

dependencies in video sequences, leading to improved 

performance over traditional methods. This research is 

especially significant in the fields of video processing, image 

quality enhancement, and deep learning, and it can provide 

new solutions for various applications in these areas. 

II. BASIC CONCEPTS 

This section presents the foundational concepts necessary 

to better understand the proposed method.   

A.Color Spaces in Image Processing 

The use of color spaces in image processing holds 

significant importance as color information aids in 

identifying key features of an image [22]. Below, two major 

color spaces are introduced: 

• Understanding the RGB Color Space 

The RGB color space is one of the most widely 

recognized color spaces in image processing. In this space, 

each pixel is composed of a combination of varying intensity 

values of three color components: Red (R), Green (G), and 

Blue (B). The intensity values of these components range 

between 0 and 255. For instance, (255, 0, 0) represents red at 

maximum intensity, (0, 255, 0) represents green, and (0, 0, 

255) represents blue. Due to its simplicity and compatibility 

with most systems, this color space is extensively used for 

image display and analysis [23].   

• Understanding the YCbCr Color Space 

The YCbCr color space consists of three main 

components: the luminance component (Y) and two 

chrominance components (Cb and Cr), which contain color 

information. The Y component represents brightness levels 

and is considered the grayscale component of the image. The 

Cb and Cr components indicate the color differences along 

the blue and red axes, respectively. This color space is 

especially useful in applications requiring the separation of 

brightness and color, such as image compression and image 

transmission in television networks [24].   

 • Color Space Conversion  

Color space conversion is a critical step in image 

processing that enables the transformation of images from 

one color space to another. These conversions are performed 

for purposes such as color correction, noise removal, or image 

compression. For example, converting from RGB to YCbCr 

allows the separation of color and brightness information, 

enabling the utilization of each component’s features for 

various processing tasks [25]. The conversion from the RGB 

space to YCbCr can be achieved using the following 

equations:   

 

𝑌 = 0.299 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵  (1) 

 

𝐶𝑏 = −0.1687 ∗ 𝑅 − 0.3313 ∗ 𝐺 + 0.5 ∗ 𝐵 + 128     (2) 

 

𝐶𝑟 = 0.5 ∗ 𝑅 − 0.4187 ∗ 𝐺 − 0.0813 ∗ 𝐵 + 128 (3) 

 

In these equations, Y represents the luminance 

(brightness) component, while Cb and Cr denote 

chrominance (color difference) components [26]. 
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B:Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a type of 

deep neural network specifically designed for image 

processing and related tasks. These networks comprise 

various layers, including convolutional layers, pooling layers, 

and fully connected layers, which collectively extract 

important features from images. 

In each convolutional layer, information from the input 

image is processed using small filter windows (kernels) 

through convolution operations, extracting various features. 

Pooling layers then reduce the dimensionality and emphasize 

more significant features. Finally, fully connected layers 

transform the extracted features into one or multiple outputs 

for specific tasks such as pattern recognition, image 

classification, or high-resolution image reconstruction [27]. 

The CNN architecture includes several convolutional and 

pooling layers that sequentially extract image features and 

reduce their dimensions. Padding is used to control the output 

image dimensions, ensuring that the output has the same size 

as the input image [28]. 

CNNs are applied to high-resolution imaging and the 

enhancement of low-resolution images from two perspectives. 

For high-resolution imaging, CNNs increase image clarity 

using information from lower-resolution images. Through 

deep learning algorithms and features extracted from higher-

resolution images, these networks can reconstruct high-

resolution images, which have applications in fields like 

medicine and engineering. 

For low-resolution image enhancement, CNNs serve as an 

effective tool for correcting and improving images. These 

networks significantly enhance the quality and resolution of 

low-resolution images, with wide-ranging applications in 

areas such as digital imaging, films, and medical imaging [29, 

30]. 

C: Canny Edge Detector 

The Canny edge detector is one of the most reliable and 

popular methods for edge detection in images, based on 

identifying sudden changes in color or light intensity. The 

operation of this detector includes several key steps: 

• Noise Removal: Using a Gaussian filter to eliminate 

noise in the image and smooth it. 

• Gradient Calculation: Determining the direction and 

magnitude of intensity changes by computing the image 

gradient. 

• Edge Enhancement: Applying Sobel filters to extract 

edges and align them with the detected edges. 

• Thresholding: Identifying significant edges and 

discarding unnecessary ones by applying a threshold to 

the image gradient. 

Due to its high precision, adaptability, and simplicity, the 

Canny detector is among the most widely used edge detection 

methods in image processing [31, 32]. 

D: Hidden Markov Random Fields 

Markov Random Fields (MRFs) are an important and 

practical approach in image processing for modeling spatial 

relationships among different pixels in an image. These fields 

are defined as a data structure of random variables, each 

dependent on the previous ones. In other words, the 

information of each pixel is modeled by considering its 

contextual and neighboring data. The advantages of these 

fields include improved accuracy and quality in image 

reconstruction and enhancement. MRF algorithms can 

effectively reduce noise and improve the performance of 

image-processing tasks [33, 34]. 

• Applications of Markov Random Fields in Image 

Reconstruction and Enhancement 

Markov Random Fields are widely used for 

reconstructing and enhancing images. They can precisely 

restore noisy or low-quality images using neighboring 

information. Moreover, they can correct imperfections and 

noise in images, providing more realistic image quality. 

These fields are also effective in enhancing images by 

adjusting colors, textures, and structures, thus aiding in 

improving image quality and reconstruction [35]. 

• Structure of the Hidden Markov Random Fields Algorithm 

The theory of Markov Random Fields is a subset of 

probability theory that examines how spatial or contextual 

connections among physical phenomena affect each other. 

MRFs are widely applied in computer vision tasks, such as 

image segmentation and surface reconstruction. 

The Hidden Markov Random Field (HMRF) model 

represents a stochastic process generated by an MRF. In this 

model, the sequence of states cannot be directly observed but 

can be inferred indirectly through observations. This model is 

effectively used for segmenting static image regions, 

particularly in applications involving brain MRI images. 

When an image is represented by y = (y1, . . . , yN) with each 

yi  corresponding to the intensity of a pixel, the objective is to 

determine a set of x = (x1, . . . , xN), where each xi  belongs to 

a set L containing all possible labels. For instance, in a binary 

segmentation scenario, L includes {0, 1}. Using the 

Maximum A Posteriori (MAP) estimate criterion, the goal is 

to determine the optimal label 𝑥∗ that satisfies the condition. 

𝑥∗ =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑥
{𝑃(𝑦|𝑥, Θ)𝑃(𝑥)}                    (4) 

The prior probability, P(x), follows the Gibbs distribution, 

while the joint probability of the occurrence of the conjugate 

probability is expressed as shown in Equation (5): 

𝑃(𝑦|𝑥, Θ) =  ∏ 𝑃(𝑦𝑖|𝑥, Θ) =  ∏ 𝑃(𝑦𝑖|𝑥𝑖 , θ𝑥𝑖) 𝑖𝑖  (5) 

The probability 𝑃(𝑦𝑖|𝒙, Θ) follows a Gaussian 

distribution with parameters θxi = (µxi, σxi). The parameter set 

Θ = {θl | l ∈ L} is estimated using the EM algorithm [35]. 

III. METHODOLOGY 

The first step in the proposed method is extracting frames 

from the video, where each frame f contains pixel information 

of a scene at a specific moment. These frames are in the form 

of color images with three RGB channels, and to enhance 

clarity, all channels must be improved. However, studies have 

shown that the human visual system is more sensitive to 

brightness variations than to color changes. Thus, the super-

resolution process can be optimized by focusing on 

improving the brightness component. 
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By converting images from the RGB color space to 

YCbCr, brightness and color information can be separated. In 

this new space, brightness (Y) is stored in a separate channel, 

while color information is contained in two channels (Cb and 

Cr). This transformation allows processing to focus on the Y 

channel for frame quality enhancement, leaving the Cb and 

Cr channels unchanged. In the end, these are combined with 

the enhanced Y channel to produce the final improved image. 

This method optimizes computational resources by 

prioritizing brightness enhancement. 

After initial frame processing and conversion to single-

channel images, the next step is determining the inputs 

required for clarity enhancement. The first and primary input 

consists of raw, low-quality images. Since the goal is to 

improve the quality of these images, the desired output should 

have a similar overall structure, differing only in details. 

Therefore, low-quality images carry significant information 

about the desired output and are used as the primary input. 

Regarding other input information, the first step involves 

applying certain transformations to better understand the 

general state and objects within the image. The first 

transformation includes segmenting video frames using the 

HMRF-EM algorithm (Hidden Markov Random Field with 

Expectation-Maximization). This algorithm serves as a 

powerful tool for image segmentation by dividing the image 

into meaningful regions based on visual feature similarities. 

A key advantage of HMRF-EM is its ability to model spatial 

relationships between neighboring pixels and statistical 

image features, making it suitable for analyzing complex 

image structures and extracting diverse content. 

Using the HMRF-EM algorithm for image segmentation 

offers several benefits in improving super-resolution 

performance. One such advantage is maintaining structural 

consistency; as in super-resolution, preserving the structural 

stability of frames is crucial for generating visually pleasant 

and coherent results. By incorporating spatial dependencies 

through the HMRF model, the algorithm ensures that 

segmentation decisions in neighboring frames are consistent 

and appropriate, leading to smoother transitions and more 

natural clarity enhancement. Additionally, video frames often 

include complex structures like textures, patterns, and objects 

of various shapes and sizes. The HMRF-EM algorithm’s 

ability to capture both local and global meaningful 

information allows it to effectively segment images with 

diverse and complex structures, ensuring accurate delineation 

of the desired regions. Finally, this algorithm provides 

flexibility in modeling the statistical features of intensity 

variation within segments, making it adaptable to various 

types of images and complexity levels, which makes it 

suitable for a wide range of applications, including super-

resolution. 

The segmentation process using HMRF-EM involves the 

iterative estimation of model parameters and updating pixel 

segmentation labels based on these estimates. The 

Expectation-Maximization (EM) algorithm facilitates this 

iterative process by alternately computing the expected value 

of hidden variables and maximizing the likelihood of 

observed data. In the context of super-resolution, the 

segmentation outputs from HMRF-EM provide valuable 

information about the spatial distribution of image details and 

structures. In this study, two outputs—binary and multi-

class—are used as extracted features for further processing. 

The binary output highlights important regions of the image, 

while the multi-class output offers a more detailed 

representation of the image content, enabling targeted 

enhancement of segmented areas and focusing on specific 

details. 

To preserve image clarity and prevent blurring, the edges 

of each frame f are identified using the Canny edge detection 

method, which detects local maxima in the image intensity 

gradient. This method calculates the gradient using a 

Gaussian derivative filter, highlighting abrupt brightness 

changes. Then, with two thresholds, strong and weak edges 

are identified, providing greater accuracy in the presence of 

noise and in detecting weak edges. After segmenting video 

frames with HMRF-EM and extracting edges with Canny, 

this information is combined to create three-channel images 

used as inputs for subsequent stages. These inputs provide 

rich information about the spatial distribution of image 

features and edges. Fig. 1 illustrates an example of these three 

features for an image. 

 

Fig. 1. Example of 3 images forming a 3-channel input based on HMRF 

 

In this paper, in addition to the HMRF-based inputs, 

temporal inputs are also proposed to incorporate temporal 

information as input for the quality enhancement process. 

These inputs are constructed by combining three consecutive 

low-resolution raw frames, including the previous frame ft-1, 

the current frame ft, and the next frame ft+1. For the first and 

last frames, where there is no preceding or succeeding frame 

(there is no f-1 or ft’+1 where t’ is the last time sample), the first 

and last frames are repeated to provide temporal inputs for all 

frames and capture the temporal dependencies between 

neighboring frames. In other words, the first frame sequence 

is {f0, f0, f1} and the last frame sequence is {ft’-1, ft’, ft’}. 

Integrating temporal inputs identifies the static and 

dynamic components in the video, which can assist in 

improving super-resolution. This is because the resolution 

enhancement approach differs for dynamic and static objects. 

Dynamic objects, especially those moving at high speeds, 

may exhibit more motion blur compared to static objects. The 

proposed method’s three-channel temporal inputs allow the 

enhancement strategy to be adjusted based on temporal 

characteristics, resulting in more effective resolution 

improvement across the entire video. Fig. 2 illustrates an 

example of combining three frames, clearly showing the 

movement of the child’s head relative to other objects in the 

image. 

With the raw single-channel images, HMRF-based 

images, and temporal images prepared, the proposed 

method's inputs for video frame enhancement are ready. To 

process these inputs, a novel parallel network architecture is 

designed and implemented, consisting of three independent 

branches. Each branch includes 19 convolutional layers 

accompanied by ReLU activation functions. The ReLU 

function, in addition to introducing the ability to analyze 
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nonlinear conditions in the network, addresses the vanishing 

gradient problem in deep neural networks by not saturating 

for large values, resulting in better network training. 

 

 

Fig. 2. Examining the dynamics and statics of objects within the video in 3 

consecutive sample frames 

Each branch of this parallel network is specifically 

designed to process its respective input type to effectively 

extract distinctive features associated with each input. The 

first branch processes the raw single-channel inputs, the 

second branch handles the HMRF-based images, and the third 

branch processes the temporal images. After each network 

processes its inputs through the 19 convolutional layers, the 

outputs of these three branches are fused into a multi-channel 

image using a concatenation layer. Subsequently, a final 

convolutional layer is applied to process and combine the 

information from the three inputs, ultimately producing 

enhanced video frames. Fig. 3 illustrates the final structure of 

this network. 

 

Fig. 3 . Designed parallel network structure 

Adopting a parallel network approach instead of using a 

single sequential network to process all inputs as a multi-

channel image allows the network to learn the features of each 

input type separately. Raw inputs, HMRF-based images, and 

temporal images each capture complementary and unique 

aspects of video frames. Raw inputs provide the overall 

structure of the image, HMRF-based images offer detailed 

edge and segmentation information, and temporal images add 

the dynamics and static features of objects to the network. 

This separation enables the network to independently learn 

filters and weights tailored to each input type, effectively 

leveraging the specific features of each input to enhance 

image quality. 

After preparing the inputs and designing the network 

structure, it is essential to determine the network's 

output and training method. The simplest approach 

involves training the network directly with high-quality 

images as the output. However, it has been shown that 

this method may result in a lack of focus on details and 

reduced accuracy [36]. When estimating high-quality 

images directly, the network must predict both the 

details and the general structure of the image 

simultaneously. Since raw inputs already contain the 

general structure, the network's error decreases quickly 

during training, leading to convergence to a local 

optimum focused on structural estimation. As the error 

diminishes and the input and output become relatively 

similar, the network may suffer from gradient reduction, 

slow improvement, and suboptimal performance in 

estimating details. 

To address this challenge, a novel training approach is 

proposed in this paper. Inspired by the VDSR method [36], 

residual learning is employed for training the network. 

Residual learning involves using the residual image as the 

target variable during training. The residual image represents 

the difference between the high-resolution image and its low-

resolution counterpart, resized using bicubic interpolation to 

match the dimensions of the high-resolution image. In other 

words, the network learns only the details that need to be 

added to the low-resolution image to make it resemble the 

high-resolution reference. This method is effective because 

the network focuses on learning the residual details rather 

than reconstructing the entire high-resolution image, 

capturing textures and complex details more accurately. 

Estimating the residual image offers several significant 

advantages that enhance performance. First, it emphasizes 

high-frequency details, such as textures and fine structures, 

allowing the network to allocate its capacity to model these 

complex details. Second, breaking the problem into two steps 

(estimating the residual image and adding it to the 

interpolated input) simplifies the learning process. This 

approach also helps convolutional neural networks to better 

learn the residual mapping while preserving the overall 

content of the input image, preventing smoothing or blurring 

in image regions. Consequently, the final images exhibit 

sharper edges and more realistic details. 

It is worth noting that residual learning requires focusing 

on the details of each frame f rather than its general features. 

Using the complete Y-channel of each frame f (Yf) may lead 

the network to concentrate on unnecessary details related to 

image content, potentially reducing accuracy in resolution 

enhancement. Therefore, as a preprocessing step, random 

patching is applied. This technique divides the input and 

output images into smaller, sometimes abstract, patches (e.g., 

part of an object's texture), enabling the network to better 

focus on improving critical details and resolution. Since the 

input and output images have different dimensions, the low-

quality raw images are first resized to match the dimensions 

of the high-quality images using bicubic interpolation. 

Subsequently, other inputs (HMRF-based and temporal 

images) are computed using the resized images. This ensures 

that all images have consistent dimensions, facilitating 

random patching. Overall, Fig. 4 illustrates the proposed 

method's flowchart. 

Convolutional Layer ReLU Activation Function Concatenation Layer
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Fig. 4 . Flowchart of the proposed method 

IV. DATASET 

In this study, the Vimeo-90K dataset [37] is used, which 

is one of the largest and most comprehensive datasets for 

video tasks, including video super-resolution (VSR). This 

dataset contains 89,800 high-resolution video clips extracted 

from various videos such as films and personal cameras. The 

clips in this dataset include image sequences with complex 

motions and lighting changes, which pose various challenges 

for video processing algorithms. The Vimeo-90K dataset, due 

to its diversity and high quality, has been used as one of the 

reliable resources in research related to video resolution. 

V. EVALUATION METRICS 

In this section, we describe the metrics used to evaluate 

the quality of enhanced video frames.   

• Peak Signal-to-Noise Ratio (PSNR): 

PSNR measures the ratio between the maximum possible 

power of a signal and the destructive noise power that affects 

its display accuracy. This metric is defined as follows: 

𝑃𝑆𝑁𝑅 =  10. log10(
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                  (6) 

where MAX is the maximum pixel value of the image 

(255 for 8-bit images), and MSE is the mean squared 

error between the reference and the processed image. 

Higher PSNR values indicate better image quality.   

• Structural Similarity Index (SSIM): 

SSIM evaluates image quality based on structural 

information degradation, considering the brightness, 

contrast, and structure of images. SSIM is defined as 

follows: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                 (7) 

where  𝜇𝑥and 𝜇𝑦 are the average pixel values of images x 

and y, 𝜎𝑥
2 and 𝜎𝑦

2 are the variances, 𝜎𝑥𝑦is the covariance of x 

and y, and 𝐶1and 𝐶2are constant values that ensure stability in 

the division. The SSIM index values range from -1 to 1, with 

higher values indicating better quality. 

• Mean Squared Error (MSE):   

This metric measures the average squared difference 

between the reference and processed images and is defined as 

follows: 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝐼𝑟𝑒𝑓(𝑖) − 𝐼𝑝𝑟𝑜𝑐(𝑖))2𝑁

𝑖=1                    (8) 

where 𝐼𝑟𝑒𝑓and 𝐼𝑝𝑟𝑜𝑐 are the pixel values of the reference 

and processed images, respectively, and N is the number of 

pixels. Lower MSE values indicate better image quality. 

VI. SIMULATION RESULTS 

In this section, the simulation results of the proposed 

method are presented, and to evaluate the performance of the 

method, the results are analyzed. It is worth mentioning that 

the proposed method has been implemented on a system with 

the following specifications: 

CPU: Core i7 13650 HX – Ram: 32Gb DDR5 – GPU: 

Nvidia RTX 4060 8Gb 

 

A. Parameter Settings and Network Training 

In this section, the results of the proposed method and 

their analysis are discussed. Initially, preprocessed video data 

and frames are extracted from video files. Each color video 

frame consists of three channels (red, green, blue), and to 

reduce computational load, the frames are converted to the 

YCbCr color space, with only the luminance channel (Y) 

being processed. Then, low-quality images are resized to 

448×256 dimensions using cubic interpolation, matching the 

dimensions of the high-quality images. By subtracting these 

images, the output set is prepared, and three types of network 

inputs, namely the single-channel initial, HMRF-based 

images, and temporal images, are computed. The HMRF-

based images are generated using the HMRF-EM algorithm 

and Canny edge detection. The HMRF-EM algorithm divides 

the frames into binary and multi-class outputs, capturing 

precise structures. For this purpose, three cases of 3, 4, and 5 

classes are modeled to determine the best case. Additionally, 

the HMRF-EM algorithm is implemented with 10 iterations 

to balance processing time and accuracy. The Canny 

algorithm detects edges using lower and upper thresholds (0.3 

and 0.75), respectively. These two thresholds provide an 

appropriate range for edge detection based on the diversity of 

the input frame images. Then, these images are merged and 

used as HMRF-based three-channel inputs. Finally, temporal 

inputs are determined from three consecutive low-resolution 
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frames, interpolated for the network to define the video’s 

temporal dynamics. 

Next, random patching of the images is performed to 

focus the network more on textures than content. Since the 

input images are 448×256 in size, 100 patches of size 32×32 

are considered to reconstruct textures. Moreover, data 

augmentation is used to improve the dataset and prevent the 

content of the images from affecting the results. Data 

augmentation includes random mirroring and random 

rotation of up to 90 degrees for input frames. After preparing 

the data, the final network design is carried out. The 

architecture of this network consists of three parallel branches, 

each processing a specific type of input (single-channel initial, 

HMRF-based images, and temporal images). Each branch 

contains 19 convolutional layers with ReLU activation, and 

each of these layers has filters of size 3×3, focusing more on 

texture details, allowing the network to provide local results 

for texture enhancement. For each convolutional layer, 32 

filters are considered, so the network has approximately 

502,369 learnable parameters in total. The outputs of these 

three branches are merged through a final convolutional layer 

to produce enhanced frames. This final layer also has a filter 

size of 3×3, but it has only one filter that generates the 

remaining luminance channel image. Also, zero padding is 

applied to all convolutional layers to preserve the spatial 

dimensions of the input images.  

After the design, the network is trained using the ADAM 

optimization algorithm with a learning rate of 0.0001, a batch 

size of 16, and 20 epochs. Fig. 5 illustrates the training 

process of this network for the HMRF 3-class case. As can be 

seen, the training process converged very fast showing the 

effectiveness of hyperparameter adjustments for network 

training. After training, the final enhanced frames are 

obtained by adding the network output and the corresponding 

interpolated raw frames (since the network output is the 

remaining frame). These are then merged with the initial Cb 

and Cr frames to produce the final enhanced image. 

After training the network in the 3-class, 4-class, and 5-

class cases, a comparison is made between these cases. The 

MSE metric for all frames in these three cases is calculated, 

and their final averages are reported in Table I. As seen, the 

3-class and 4-class cases have almost similar performance, 

but the 4-class case provides better performance, indicating 

the impact of increased complexity. However, the 5-class 

case shows weaker performance, indicating that increasing 

the number of segmentation classes does not always improve 

performance. Finally, the 4-class case is selected as the 

optimal case for further processing, and evaluation metrics 

for each frame are calculated and analyzed. 

The computational complexity of the proposed method is 

justified given its application in video resolution 

enhancement, where high-quality output is prioritized over 

minimal computational cost. Each of the three parallel CNN 

branches consists of 19 convolutional layers, leading to an 

increased number of operations; however, the model remains 

efficient due to optimized layer design and parallel processing. 

Moreover, although the network structure seems complicated, 

it has a small number of trainable parameters (502.3k 

parameters), less than many more straightforward structures. 

For example, the proposed network has fewer trainable 

parameters than the deep learning network mentioned in [38], 

which just has two fully connected layers. Additionally, 

preprocessing operations are implemented in an optimized 

manner to ensure minimal overhead. While real-time 

performance depends on the available hardware, the method 

achieves an inference speed of 33.72 fps on a GeForce RTX 

4060 – 8GB GPU model, demonstrating its scalability for 

practical applications in video processing. 

 

Fig. 5. The training process of the network designed for HMRF set in 3-

class mode 

TABLE I 

  Study of the Effect of Segmentation Type on the 

Performance of the Proposed Method 

5 4 3 

HMRF 

class 

number 

42.3238 36.8434 37.5962 
Average 

MSE 

B.Performance Evaluation of the Proposed Method Using 

the PSNR Metric 

As explained in the previous section, PSNR measures the 

ratio between the maximum possible power of a signal and 

the destructive noise power that affects its display quality. 

This metric is expressed in decibels (dB), and higher PSNR 

values indicate better image quality, as they reflect a lower 

level of distortion or noise caused by the enhancement 

process. 

Typically, PSNR values above 30 dB are considered 

acceptable and suitable for most applications. In this section, 

the performance of the proposed video frame super-resolution 

enhancement approach is evaluated using the PSNR metric. 

In this regard, the PSNR metric is first calculated between all 

the enhanced images produced by the proposed method and 

the reference high-quality images. The average PSNR value 

calculated for all frames using the proposed method is 

34.8617 dB, higher than the 30 dB threshold, indicating that 

the proposed method performs well. Furthermore, two frames 

from randomly selected video sequences are presented, and 

their results are shown in Fig.s 6 and 7. For instance, as can 

be seen in Fig. 6, the proposed method could greatly enhance 

the image’s resolution. The PSNR values for these two frames 

are 39.0568 and 31.5714, respectively. Achieving PSNR 

values in a range significantly above the ideal threshold (30 

dB) demonstrates the effective enhancement of the proposed 

method. 
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Fig. 6 - Result of improving the hyper-resolution in the first random frame 
sample along with the obtained PSNR value (a) Improved frame using the 

proposed method (b) Frame with reference quality 

 

Fig. 7 - Result of improving the hyper-resolution in the second random frame 

sample along with the obtained PSNR value (a) Improved frame using the 

proposed method (b) Frame with reference quality 

C: Performance Evaluation of the Proposed Method Using 

the SSIM Metric 

In this section, we evaluate the performance of our 

proposed super-resolution enhancement method using the 

SSIM metric. As previously mentioned, SSIM values range 

from -1 to 1, with higher values indicating better image 

quality. An SSIM value close to 1 indicates that the processed 

image is very similar to the reference image in terms of 

brightness, contrast, and structure. To provide a visual 

representation of SSIM, the SSIM map for a randomly 

selected frame is shown in Fig. 8. In this map, dark areas 

indicate regions with low SSIM values, meaning the 

structural similarity between the reference and processed 

images is low. Conversely, bright areas represent regions 

with higher SSIM values, indicating greater structural 

similarity. 

As shown in Fig. 8, the SSIM map generated by the 

proposed method predominantly has lighter colors, 

suggesting that most of the frames examined have a high 

structural similarity with the reference image.   

Additionally, to comprehensively assess the performance 

of the proposed method, the SSIM values for all frames were 

calculated, and the average was taken. The resulting value is 

0.92857, indicating the effective performance of the proposed 

method.   

Overall, the SSIM evaluation confirms that our approach 

not only enhances the image clarity but also preserves the 

important structural details of the original frames, resulting in 

high-quality video output. 

 

Fig. 8. SSIM map for a random frame sample (a) Improved frame using the 

proposed method (b) SSIM map of the same frame 

D: Performance Evaluation of the Proposed Method Using 

the MSE Metric   

In this section, we evaluate the performance of our 

proposed approach using the MSE metric. To show the 

distribution of MSE values across different frames, a 

histogram is presented in Fig. 9. The provided histogram 

illustrates the frequency distribution of MSE values for all 

frames processed by the proposed method.   

As shown in Fig. 9, the highest concentration of MSE 

values for all frames falls within the range of 0 to 20. This 

indicates that most of the frames processed by our method 

have very low MSE values, demonstrating the effectiveness 

of our approach in minimizing errors and discrepancies from 

the reference images. Furthermore, the low spread of MSE 

values highlights the consistency and reliability of the 

proposed method in maintaining high-quality results across 

various frames. 

 

Fig. 9 - Histogram of MSE values obtained for all frames 

VII. COMPARISON 

The field of VSR has progressed substantially in recent 

years, with numerous methods developed to improve video 

quality and sharpness. This paper examines seven key studies 

and contrasts their findings with the proposed approach in this 

work. 

Reference [39] introduces a network called EGVSR, 

which achieves faster processing and reduced computational 

load by utilizing spatiotemporal learning and hardware 

optimization. This method is faster and visually superior to 

TecoGAN. Reference [40] uses deep convolutional neural 

networks (CNNs) to estimate blur kernels and recover video 

frames, achieving better results in terms of PSNR and SSIM 

compared to existing methods. Additionally, reference [41] 

proposes a network called DDAN that uses spatiotemporal 

features for motion compensation and more accurate 

reconstruction, demonstrating superior performance in 

various tests. Reference [42] presents a hierarchical 

combined method that recovers lost details and effectively 

handles complex motion in videos by dividing the input 

sequence into specific groups and using attention and fusion 

modules.  Reference [43] proposes a self-supervised learning 

framework that eliminates the need for predefined 

degradation models or paired HR-LR training data. Their 

method jointly estimates blur kernels and reconstructs high-
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resolution videos while leveraging optical flow for temporal 

information.  

In contrast, the challenge of generating high-quality, high-

frame-rate videos was addressed by introducing a hybrid 

imaging system (HIS-VSR) in reference [44]. Their model 

integrates a low-resolution, high-frame-rate main video with 

a high-resolution, low-frame-rate auxiliary video, effectively 

combining super-resolution and frame interpolation 

techniques. This method outperforms conventional video 

processing models, such as Deep-SloMo, particularly in 

reconstructing dynamic scenes with enhanced spatial-

temporal details. Paper [45] enhances a pre-trained image 

super-resolution network with a fast temporal aggregation 

module that employs deformable convolutions for inter-

frame alignment.  

The proposed method in this paper enhances video super-

resolution by combining Hidden Markov Random Fields 

(HMRF) and deep learning networks. Utilizing a combination 

of inputs, including HMRF-based input, raw low-quality 

images, and temporal input, improves the resolution of 

frames. The proposed method enhances the super-resolution 

performance compared to other methods through residual 

learning and a new parallel network architecture. 

Comparisons show that the proposed method outperforms 

others in PSNR and SSIM metrics and demonstrates high 

robustness in producing high-resolution videos (Table II). 

TABLE II 

 Comparison of the Proposed Method with Other Meta-

separability Methods 

SSIM PSNR Method Reference 

0.80 25.88 
EGVSR and CNN (FNet 

and SRNet) 
[39] 

0.8372 29.18 

Deconvolution-based 

Blind Video Super-

resolution using CNNs 

[40] 

0.7892 26.48 DDAN [41] 

0.8419 27.59 TGA [42] 

0.7629 24.59 
A self-supervised 

learning method 
[43] 

0.9291 30.99 HIS-VSR [44] 

0.7858 26.34 IMDN [45] 

0.9285 34.86 HMRF + Deep learning 
Proposed 

method 

 

VIII.CONCLUSION 

This paper presents an innovative approach to improving 

the quality of video frames through super-resolution, 

designed based on the combination of advanced deep learning 

techniques and image processing. The proposed method, 

utilizing a new parallel network architecture as an effective 

tool, successfully extracts useful information from various 

inputs, including raw images, HMRF-based images, and 

temporal inputs, simultaneously. 

Using the HMRF-EM algorithm, the image segmentation 

process contributed to maintaining structural stability and 

accuracy in edge detection and key region identification. This 

improvement in segmentation quality, especially in images 

with complex and diverse structures, allowed for creating 

more visually pleasing and realistic results. Additionally, 

using temporal inputs by combining three consecutive frames 

enabled the network to recognize temporal dependencies 

between frames and adjust the enhancement strategy based on 

dynamic and static features. 

The residual learning method, considered an innovative 

training approach, focused on estimating high-frequency 

details, allowing the network to estimate only the necessary 

details rather than reconstructing the entire image. This 

strategy was particularly effective in preserving textures and 

intricate details, significantly enhancing the final image 

quality. Furthermore, the use of random patching as a 

preprocessing step enabled the network to focus on key, 

effective details, thus preventing image quality degradation. 

Experimental results demonstrated that the proposed 

method, achieving an SSIM value of 0.92857 and a PSNR 

value of 34.8617, significantly outperforms existing methods. 

These results indicate the effectiveness of the proposed 

method in reconstructing high-quality video frames with 

precise detail. 

Finally, this research could serve as a foundation for 

future studies in image and video quality enhancement using 

advanced deep-learning techniques and open new avenues for 

future research in this field. 
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