
Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE)                               43 
 

     Abstract-- This paper investigates the performance of a 

predictor-based  H_∞controller applied to a first-order DC motor 

system under significant input-time delays. Alongside the 

proposed predictor-based H_∞ controller, an LQR controller has 

been implemented to serve as a benchmark for effectively 

comparing and evaluating the performance of the proposed 

method. This study specifically focuses on scenarios involving time 

delays exceeding one second and external disturbances such as 

constant, sinusoidal, and stochastic disruptions. The proposed 

controller employs a robust memory-state feedback mechanism to 

ensure closed-loop stability and minimize the impact of 

disturbances. Using Linear Matrix Inequality (LMI) conditions, 

the controller compensates for input delays of up to five seconds 

while guaranteeing disturbance attenuation. A delay-dependent 

Lyapunov stability analysis is conducted to validate the proposed 

approach. Comprehensive simulation results and evaluations 

based on key performance metrics, such as settling time and 

overshoot, indicate that the predictor-based H_∞  controller 

outperforms both the open-loop configuration and the LQR 

controller. Notably, the proposed approach achieves a reduced 

overshoot, a faster transient response, and superior disturbance 

attenuation compared to the LQR method. Furthermore, this 

controller significantly enhances the overall system robustness and 

control precision in scenarios with prolonged delays. The 

predictor-based H_∞ controller suggests an innovative solution for 

mitigating the effects of long input delays in DC motor systems, 

thereby overcoming a pivotal challenge in robust control. 

 
Index Terms- Robust Controller, Time delay system, Norm 

Bounded Disturbance, LMI, Convex Optimization, LQR 

I.  INTRODUCTION 

 ime delays are a common challenge in control systems, 

often resulting from the interval needed to collect necessary 

data, formulate control commands, and execute these 

actions. Time delay is not limited to engineering applications; 

it is frequently encountered in various domains, such as 

biological, medical, chemical, and economic processes. 

Additionally, time delays are intrinsic to the modeling of 

physiological systems, ecological systems, population 

dynamics, and in fields like transportation and communication 

[1-3]. 

Time delays are frequently a source of instability, making 

the stability analysis and robust control of time-delay systems 
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crucial from theoretical and practical perspectives [4-5]. The 

conventional approaches to stability analysis for time-delay 

systems are the Lyapunov-Krasovskii and Lyapunov-

Razumikhin methods [6-8]. Although the Lyapunov-

Razumikhin method is easier to implement, the Lyapunov-

Krasovskii approach is less conservative, making it the 

preferred method in most recent studies and publications [9, 

10]. Time delays can occur in the system states, in the control 

input, or both. However, the majority of previous studies have 

primarily considered delays within the system states [11, 12]. 

For systems with delays in the control input, the actuator 

introduces a delay before transmitting the control signal directly 

to the system [13]. Utilizing predictor-based feedback is an 

effective approach for stabilizing these systems. This delay type 

is observed in applications such as active suspension systems in 

vehicles and Direct Current (DC) motor systems [14-17]. 

Systems with input delays can be controlled using one of two 

methods: the memory-based (dynamic) approach or the 

memoryless (static) approach. Static methods are simpler in 

structure but tend to underperform, whereas dynamic methods, 

despite their complexity, are more effective at compensating for 

long delays [18, 19]. In previous papers, numerous techniques 

have been applied for driving DC motors. In [20], a 

comprehensive review about the Alternating Current (AC) to 

DC and DC to DC converters for brushed DC Motor Drives was 

presented. In this study, different controllers, such as classical 

Proportional-Integral-Derivative (PID) controllers and 

intelligent controllers on DC Motor, were investigated. In [21], 

a robust control approach utilizing the concept of differential 

flatness was proposed for the bidirectional trajectory tracking 

of a "full-bridge Buck inverter–DC motor" system. The study 

demonstrated the effectiveness of this control technique 

through experimental implementations and simulations, 

confirming its robustness even under abrupt electrical 

variations.  In [22], a linear parameter varying (LPV) control 

approach was developed for managing the energy resources of 

all-electric boats, which included a solar power plant, fuel cell, 

and battery package. The study designed a robust controller that 

optimally utilized these energy resources by deriving an LPV 

representation through sector-nonlinearity techniques. In [23], 

a unity magnitude shaper command input was proposed for 
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damped systems, encompassing both integer and fractional 

orders. The study demonstrated the analytic design of the unity 

magnitude shaper and validated its effectiveness through 

experimental results on a DC motor bench. In [24], the tuning 

of digital PID controllers for a Controller area network (CAN)-

based DC motor was investigated to address the challenges 

posed by stochastic delays. The study transformed the PID 

tuning problem into a static-output-feedback controller design 

for time-delayed systems, utilizing particle swarm optimization 

(PSO) and linear-quadratic-regulator (LQR) methods. The 

experimental results validated the effectiveness of the proposed 

tuning strategy, demonstrating improved performance in 

managing CAN-induced delays. In this research, time delays 

were treated as stochastic; nevertheless, these delays did not 

function as input delays. A recent study [25] proposed an 

adaptive tracking control strategy for nonlinear systems with 

input delay and unmeasurable states within predefined sets. 

Utilizing neural networks and reinforcement learning, this 

method achieves optimal control and ensures the closed-loop 

system's semi-global uniform ultimate boundedness, 

showcasing its potential for practical applications. 

Previous research has demonstrated controllers capable of 

mitigating the effects of delays in the presence of constant 

disturbances, but these approaches typically relied on trial-and-

error numerical tuning without a solid theoretical foundation or 

Lyapunov stability analysis [16]. The authors of [17] employed 

the predictor-based  H_∞  controller for a first-order DC motor 

and analyzed its robustness by comparing it with a robust PID 

controller and a common  H_∞ controller, considering time 

delays of up to 1.1 seconds.  

This study introduces a robust memory state feedback 

controller that guarantees closed-loop stability for a first-order 

DC motor system under input delays of up to five seconds, 

utilizing linear matrix inequality (LMI) conditions solved using 

convex optimization techniques. In addition, an LQR controller 

has been implemented as a performance evaluation. Compared 

with a recent work [25], which addressed systems with shorter 

input delays, the proposed method significantly extends the 

input delay range while maintaining system stability and 

robustness. The controller effectively compensates for input 

delays and attenuates norm-bounded disturbances such as 

constant, sinusoidal, and stochastic disturbances through a 

predictive feedback mechanism. Furthermore, compared with 

the LQR controller, our approach achieves a reduced overshoot, 

a faster transient response, and superior disturbance attenuation, 

thereby enhancing the overall system robustness and control 

precision. 

The remainder of this paper is structured as follows: In 

Section 2, we discuss the theoretical foundations, problem 

formulation, and derivation of Theorem 1, addressing the 

challenges associated with time delays and disturbances in DC 

motor systems. In Section 3, we describe the application of the 

proposed predictor-based H_∞ controller and introduce the 

LQR controller as a performance benchmark. This section 

covers the theoretical framework, numerical simulations 

demonstrating the effectiveness of the proposed approach under 

various input delay scenarios and disturbance types, and the 

implementation of the LQR controller. In Section 4, a 

comprehensive comparison between the proposed controller 

and the LQR controller is provided, along with a discussion of 

the study's limitations and recommendations for future 

research. Finally, Section 5 concludes the paper by 

summarizing the key findings on robust DC motor control. 

 

II. PRELIMINARIES AND PROBLEM FORMULATION 

Consider a linear system with input delay and norm-bounded 

disturbance described using 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡 − 𝜏) + 𝐺𝐷(𝑡) 
𝑦(𝑡) = 𝐶𝑥(𝑡) 
𝑍(𝑡) = 𝐷𝑥(𝑡) + 𝐸𝑢(𝑡 − 𝜏)    
 𝑢(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝜏 , 0]                                                   (1) 

 

Here, 𝑥(𝑡) ∈ 𝑅𝑛is a state vector, 𝑢(𝑡) ∈ 𝑅𝑚 is a control input, 

𝑦(𝑡) ∈ 𝑅𝑝is a measured output, 𝑍(𝑡) ∈ 𝑅𝑑 is a controlled 

output, τ is a constant and known delay, 𝜑(𝑡) is a continuous 

initial function on 𝑡 ∈ [−𝜏 .  0], and 𝐷(𝑡) ∈ 𝑅𝑞  is a norm-

bounded disturbance. Also, 𝐴, 𝐵, 𝐺, 𝐶, 𝐷, and 𝐸 are known real-

valued constant matrices with appropriate dimensions [27].  

Assumption 1: The exogenous disturbance 𝐷(𝑡) is norm-

bounded and satisfies the following constraint: 

 

‖𝐷(𝑡)‖𝓛2

2 = ∫ ‖𝐷(𝑠)‖2𝑑𝑠
∞

0
<  𝐻 and   𝐻 ≥ 0               (2) 

 

Assumption 2: All system states are accessible or can be 

measured. 

This method aims to minimize the influence of disturbances 

on system performance by reducing their norm, which is 

achieved by minimizing the 𝐻∞   norm of the norm-bounded 

disturbance 𝐷(𝑡) relative to the controlled output 𝑍(𝑡). In 

addition, the adverse effects of input delay are addressed using 

a predictive vector. To manage the input delay, a prediction 

vector is computed and utilized to design the control input. 

Lemma 1 (Schur complement  [26]): Consider the given 

constant matrices 𝛺1, 𝛺2, and 𝛺2, where 𝛺1 = 𝛺1
𝑇 , and 𝛺2 > 0. 

Then, the following relation always holds: 

 

𝛺1 + 𝛺3
𝑇𝛺2

−1𝛺3 < 0 ↔ [
𝛺1 𝛺3

𝑇

𝛺3 −𝛺2
] < 0               (3) 

 

Lemma 2:  The time-delay prediction vector for the input of 

system (1) is obtained from the following equation: 

 

�̅�(𝑡) = 𝑥(𝑡 + 𝜏) = 𝑒𝐴𝜏𝑥(𝑡) + ∫ 𝑒𝐴(𝑡−𝑠)𝑡

𝑡−𝜏
[𝐵𝑢(𝑠) + 𝐺𝐷(𝑠 +

𝜏)]𝑑𝑠                                                                                       (4) 

 

Lemma 3: In the absence of norm-bounded disturbances, the 

prediction vector for system (1) is derived from the following 

equation: 

 

𝑃(𝑡) =  𝑥(𝑡 + 𝜏) −  ∫ 𝑒𝐴(𝑡−𝑠)𝑡

𝑡−𝜏
[𝐺𝐷(𝑠 + 𝜏)]𝑑𝑠  =

 𝑒𝐴𝜏𝑥(𝑡) + ∫ 𝑒𝐴(𝑡−𝑠)𝑡

𝑡−𝜏
[𝐵𝑢(𝑠)]𝑑𝑠                                         (5) 
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Subsequently, the robust 𝐻∞ control problem for a closed-

loop system is analyzed by leveraging a quadratic Lyapunov 

function. To provide the necessary conditions for the existence 

of a delay-dependent memory state-feedback 𝐻∞ controller, the 

following theorem is presented. 

Assuming an initial function, the predictor vector can be 

determined for subsequent times using a recursive formula 

derived from Lemmas 2 and 3: 

 

�̅�(𝑡) = 𝑃(𝑡) + 𝑒𝑝(𝑡)                                     (6) 
where 

𝑒𝑝(𝑡) =  ∫ 𝑒𝐴(𝑡−𝑠)𝑡

𝑡−𝜏
[𝐺𝐷(𝑠 + 𝜏)]𝑑𝑠                                     (7) 

Therefore, the predictive-based controller is determined as 

follows: 

 

𝑢(𝑡) = 𝐾𝑃(𝑡) = 𝐾�̅�(𝑡) − 𝐾𝑒𝑝(𝑡)                                         (8) 

 

According to Lemma 2, the delayed input of the system is as 

follows: 

 

𝑢(𝑡 − 𝜏) = 𝐾𝑥(𝑡) − 𝐾𝑒𝑝(𝑡 − 𝜏)                                           (9) 

 

By substituting the delayed input (9) into the system (1), the 

following results have been obtained: 

 

�̇�(𝑡) = (𝐴 + 𝐵𝐾)𝑥(𝑡) + 𝐺1�̅�(𝑡)                                          (10) 

 

𝑍(𝑡) = (𝐷 + 𝐸𝐾)𝑥(𝑡) + �̅��̅�(𝑡)                                            (11) 

here, 

 

𝐺1 = [𝐺  𝐵],         �̅� = [𝐷𝑇     �̃�𝑇]𝑇        
�̃�(𝑡) = −𝐾𝑒𝑝(𝑡 − 𝜏),             �̅� = [0     𝐸]        (12) 

 

Equation (8) indicates that the prediction vector has been 

added to the state vector, and its dynamics must be considered. 

Therefore, the difference equation for the prediction vector can 

be determined as follows: 

 

�̇�(𝑡) = 𝑒𝐴𝜏�̇�(𝑡) + 𝐵𝑢(𝑡) − 𝑒𝐴𝜏𝐵𝑢(𝑡 − 𝜏) +

 ∫ 𝐴 𝑒𝐴𝜏𝑡

𝑡−𝜏
[𝐵𝑢(𝑠) ]𝑑𝑠                                                 (13) 

 

By substituting equations (1), (5), and (8) into equation (13), 

the prediction vector is obtained from the following relation: 

 

�̇�(𝑡) = (𝐴 + 𝐵𝐾)𝑃(𝑡) + 𝑒𝐴𝜏𝐺𝐷(𝑡) = (𝐴 + 𝐵𝐾)𝑃(𝑡) +
𝐺2�̅�(𝑡)                                                                      (14) 

 
where 

𝐺2 = 𝑀[𝐺   0],             𝑀 = 𝑒𝐴𝜏 . 
�̅�(𝑡) = [𝐷𝑇(𝑡)      �̃�𝑇(𝑡)]𝑇          
�̃�(𝑡) = −𝐾𝑒𝑝(𝑡 − 𝜏) 

 

Definition 1. Given a positive constant γ  , the time delay 

system (1) is said to be robustly asymptotically stable with 

disturbance damping γ, if the system is asymptotically stable 

for 

�̅�(t) = 0 and, under zero initial conditions, the following 𝐻∞ 

criterion is satisfied for all non-zero �̅�(t) with bounded norm: 

‖𝑍(𝑡)‖𝓛2
< 𝛾‖�̅�(𝑡)‖𝓛2

                              (15) 

Theorem 1: A linear system with input delay and bounded-

norm disturbance (1) is stable with a predictor-based controller 

in the presence of external disturbance if, for 𝐷(𝑡) ∈ 𝓛2[0  ∞), 

the criterion ‖𝑍(𝑡)‖𝓛2

2 < 𝛾2‖�̅�(𝑡)‖𝓛2
 satisfies. Additionally, 

there exists a positive definite symmetric matrix 𝑋 > 𝑜 and an 

appropriately dimensioned matrix 𝑌, along with constant values 

γ، λ، 𝐿𝑅, and 𝐿𝑆 such that the following linear matrix inequalities 

are satisfied: 

 

[
 
 
 
 

𝜓11 0 𝐺 𝐵 𝑋𝐷𝑇 + 𝑌𝑇𝐸𝑇

0 𝜓22 𝜆𝐻𝐺 0 0

𝐺𝑇 𝜆𝐺𝑇𝐻𝑇 −𝛾2𝐼 0 0

𝐵𝑇 0 0 −𝛾2𝐼 𝐸𝑇

𝐷𝑋 + 𝐸𝑌 0 0 𝐸 −𝐼 ]
 
 
 
 

< 0                                                                                                  (16) 

 

[𝐿𝑅𝐼 𝑌𝑇

𝑌 𝐼
] > 0                                                                             (17) 

[
𝐿𝑆𝐼 𝐼
𝐼 𝑋

] >

0                                                                                                           

                                                                                              (18) 

 

where, 𝛹11 = 𝑋𝐴𝑇 + 𝑌𝑇𝐵𝑇 + 𝐴𝑋 + 𝐵𝑌  and  𝛹22 =
𝜆(𝑋𝐴𝑇 + 𝑌𝑇𝐵𝑇 + 𝐴𝑋 + 𝐵𝑌) 

 

The suitable gain for the predictor-based controller, as given in 

(8), can be determined from the following equation: 

 

𝐾 = 𝑌𝑋−1                                                                            (19)

        
Proof. To analyze and prove Theorem 1, a quadratic Lyapunov 

function has been employed, as defined by the following 

equation: 

 

𝑉(𝑡) ≜ 𝑉1(𝑥(𝑡)) + 𝑉2(𝑃(𝑡)) = 𝑥𝑇(𝑡)𝑄1𝑥(𝑡 ) +
𝑃𝑇(𝑡)𝑄2𝑃(𝑡)                                                                    (20) 

 

where, 𝑄1 and 𝑄2 are positive definite matrices. 

By leveraging Lemmas (1) to (3) along with the quadratic 

Lyapunov function in Equation (20), the proof of Theorem 1 is 

derived. Notably, further details regarding this method can be 

found in [27]. 

 

III . IMPLEMENTION, SIIMULATION, AND 

VALIDATION FOR DC MOTOR CONTROL 

A.Utilization of DC Motors 

In this subsection, a robust controller is implemented on a 

first-order DC motor model. The simplified transfer function of 

a first-order DC motor with input delay is represented by the 

following equation: 

 

𝑇(𝑠) =
𝑘

1+𝑠𝑇
𝑒−𝜏𝑠                                       (21) 
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Here, the transfer function’s output is the angular velocity 

(𝜔) and the input is the applied voltage 𝑢. In Equation (21), 

𝑇(𝑠) denotes the DC motor's transfer function, where 𝑘 

represents the steady-state gain, T is the time constant, and 𝜏 is 

the input delay. The transfer function in Equation (36) provides 

a classical simplified model of small DC motors, where the 

inductance is typically neglected. The term 𝑒−𝜏𝑠 accounts for 

the presence of input delay. 

Therefore, the state-space model of this system, incorporating 

the norm-bounded disturbance (𝑑), can be represented as 

follows [16]: 

 

�̇� = 𝑎𝜔 + 𝑏𝑢(𝑡 − 𝜏) + 𝑑                             (22) 

 

where 𝑎 = −
1

𝑇
, and 𝑏 =

𝐾

𝑇
. The parameter values for 𝑘, 𝑇,   𝜔𝑟𝑒𝑓  

are given as 177.75, 1.14 s, and 150 rad/s, respectively. 

For the simulation procedure, the problem is initially 

transformed from tracking to regulation by applying certain 

variable changes, after which an 𝐻∞ robust controller is 

designed. The following variable transformations are 

introduced for system (37): 

 

{
𝑥 = 𝜔 − 𝜔𝑟𝑒𝑓 → �̇� = �̇�
𝑣 = 𝑢 − 𝑢𝑟𝑒𝑓                    

                                   (23) 

 

Thus, by substituting Equation (38) into Equation (37), the 

following equations are obtained: 

 

�̇� = 𝑎(𝑥 + 𝜔𝑟𝑒𝑓) + 𝑏(𝑣(𝑡 − 𝜏) + 𝑢𝑟𝑒𝑓) + 𝑑                 (24) 

 

�̇� = 𝑎𝑥 + 𝑏𝑣(𝑡 − 𝜏) + 𝑎𝜔𝑟𝑒𝑓 + 𝑏𝑢𝑟𝑒𝑓 + 𝑑            (25) 

 

Given the relation 𝑢𝑟𝑒𝑓 = −
𝑎

𝑏
𝜔𝑟𝑒𝑓     , the equations can be 

rewritten as follows: 

 

{
�̇� = 𝑎𝑥 + 𝑏𝑣(𝑡 − 𝜏) + 𝑑

𝑍 = 𝐶𝑥 + 𝐸𝑣(𝑡 − 𝜏)       
                          (26) 

 

Using Theorem 1, the design of an 𝐻∞ memory-state 

feedback controller is expressed as 𝑢(𝑡) = K𝑃(𝑡), where 𝑃(𝑡) 

is the prediction vector for the system, and K is the state 

feedback gain matrix. The matrix K must be designed to ensure 

that the closed-loop system (without disturbance) remains 

asymptotically stable. Furthermore, the closed-loop stability 

under a disturbance is guaranteed by setting a positive constant 

γ and assuming zero initial conditions, such that the 𝐻∞ 

criterion, represented by Equation (15), holds for all nonzero 

norm-bounded disturbances. Therefore, the feedback gain 

matrix K is determined by solving the linear matrix inequalities 

(LMIs) in Theorem 1, and the prediction vector is given by the 

following equation: 

 

𝑃(𝑡) =  𝑒𝐴𝜏𝑥(𝑡) + ∫ 𝑒𝐴(𝑡−𝑠)𝑡

𝑡−𝜏
[𝐵𝑢(𝑠)]𝑑𝑠          (27) 

 

Consequently, the controller design for system (22) is 

carried out as follows: 

 

𝑣 = 𝐾𝑃 = 𝐾𝑒𝐴𝜏𝑥(𝑡) + 𝐾 ∫ 𝑒𝐴(𝑡−𝑠)𝑡

𝑡−𝜏
[𝐵𝑣(𝑠)]𝑑𝑠        (28) 

 

By substituting 𝑣 = 𝑢 − 𝑢𝑟𝑒𝑓  into Equation (28), the final form 

of the controller is given as follows: 

𝑢 = 𝑢𝑟𝑒𝑓 + 𝐾𝑒𝐴𝜏(𝜔 − 𝜔𝑟𝑒𝑓) +  𝐾 ∫ 𝑒𝐴(𝑡−𝑠)𝑡

𝑡−𝜏
[(𝐵𝑢(𝑠) −

𝑢𝑟𝑒𝑓))]𝑑𝑠                                                                        (29) 

 

In the following subsection, an LQR controller is employed 

to facilitate a comparative analysis between the proposed 

method and its performance in a first-order DC motor model 

with delay. Subsequently, a detailed comparison of the two 

controllers is presented. 

 

B. LQR Controller 

The Linear Quadratic Regulator (LQR) is a fundamental 

method in control theory used to design controllers for dynamic 

systems. This method aims to determine the optimal control 

inputs that minimize a cost function, typically a quadratic 

function representing a trade-off between the system's state 

deviations and control effort. The LQR approach involves 

solving a Riccati differential equation to derive the optimal 

feedback gains. These gains, when applied, ensure that the 

system remains stable and performs optimally in the presence 

of disturbances and uncertainties [28]. 

An LQR controller is designed as following: 

 

𝑢𝐿𝑄𝑅(𝑡) = 𝐾𝐿𝑄𝑅(𝑥(𝑡) − 𝜔𝑟𝑒𝑓) + 𝑢𝑟𝑒𝑓                (30) 

 

In equation (30), 𝐾𝐿𝑄𝑅  is the LQR gain, which is calculated 

by solving the Riccati equation for the given system dynamics 

and weighting matrices. The resulting gain is then used to 

compute the optimal control input in the simulation. By 

leveraging MATLAB's lqr function, we efficiently computed 

the optimal LQR gain for our DC motor system, ensuring high-

performance control.  

In comparing the behavior of the proposed Controller with 

the LQR Controller, several significant differences in 

performance have been observed. 

 

C. Simulation and Comparative Analysis of the Proposed 

Controller and the LQR Controller 

In this subsection, we examine the results of applying a 

robust state feedback controller, based on predictive strategies  

and LQR controller, to a first-order DC motor. To assess the 

controller's performance under time delays exceeding one 

second, we compare norm-bounded disturbances in three 

forms: time-invariant, sinusoidal, and stochastic. 

First, the feedback gain  𝐾   is determined through linear 

matrix inequalities (LMIs) as derived in Theorem 1, using the 

YALMIP toolbox within MATLAB. Subsequently, simulations 

in  MATLAB are conducted with the obtained gain 𝐾 to evaluate 

the controller’s effectiveness in compensating for input delay 

and attenuating disturbances.  

The parameters for determining the gain 𝐾 and the 

simulators are considered as follows [16] 
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γ = 0.3, λ = 0.01, 𝐿𝑅 = 103, 𝐿𝑠 = 103, c = 0.7, dt = 0.01      
                                                                                 (31) 

 

In previous research, no specific technique was employed 

for determining the gain 𝐾; rather, a trial-and-error approach 

was often used. Additionally, prior studies considered time 

delays up to one second. However, in this paper, the optimal 

gain 𝐾 is obtained using the LMI method and convex 

optimization for input delays up to five seconds, thereby 

reducing conservatism by employing a delay-dependent 

controller. 

 

 

IV. TIME-INVARIANT NORM-BOUNDED 

DISTURBANCE 

In this section, a time-invariant norm-bounded disturbance 

with 𝑑 = 24
𝑟𝑎𝑑

𝑠
 is applied during the interval from the tenth to 

the thirtieth second, with input delays 1.5 to 5 seconds. The 

feedback gain obtained using the LMI method is 𝐾 = −2.4128 

for an input delay of 1.5 seconds and 

𝐾 = −2.4127 for the other input delay values. Fig. s 1 to 5 

illustrate the effect of input delay variations including 1.5, 2, 3, 

4, and 5 seconds, respectively, on the system. 

 

 

 

Fig. 1: Angular velocity and control input for an input delay of 1.5 seconds under a constant norm-bounded disturbance using the proposed controller and the 
LQR controller  

 

Fig. 2: Angular velocity and control input for an input delay of 2 seconds under a constant norm-bounded disturbance  using the proposed controller and the LQR 
controller  
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Fig. 3: Angular velocity and control input for an input delay of 3 seconds under a constant norm-bounded disturbance  using the proposed controller and the LQR 
controller  

 

Fig. 4: Angular velocity and control input for an input delay of 4 seconds under a constant norm-bounded disturbance  using the proposed controller and the LQR 
controller  

 

Fig. 5: Angular velocity and control input for an input delay of 5 seconds under a constant norm-bounded disturbance  using the proposed controller and the LQR 

controller  
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The stability of the closed-loop system is maintained for 

input delays ranging from 1.5 to 5 seconds. Furthermore, the 

controller effectively attenuates the norm-bounded 

disturbance within this range. As the delay increases, the 

level of disturbance attenuation gradually decreases, and at 

a delay of τ = 5 seconds, the disturbance attenuation is 

completely lost. Therefore, it can be noted that the 

performance and speed of the system in closed-loop mode 

with the robust controller are superior to those of the open-

loop system, even in the presence of delay. 

Sinusoidal Norm-Bounded Disturbance: 

 In this section, the system is subjected to a norm-

bounded sinusoidal disturbance of the form 

D(t)=5+10sin(0.3t). In this case, the stability of the 

closed-loop system is guaranteed in the presence of input 

delays ranging from 1.5 to 5 seconds, and it effectively 

achieves disturbance attenuation. Fig. s 6 through 10 

demonstrate the impact of varying input delays of 1.5, 2, 3, 

4, and 5 seconds on the system in the presence of a sinusoidal 

norm-bounded disturbance. 
 

 

Fig. 6: Angular velocity and control input for an input delay of 1.5 seconds under a sinusoidal norm-bounded disturbance using the proposed controller and the 
LQR controller  

 

Fig. 7: Angular velocity and control input for an input delay of 2 seconds under a sinusoidal norm-bounded disturbance using the proposed controller and the 
LQR controller  
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Fig. 8: Angular velocity and control input for an input delay of 3 seconds under a sinusoidal norm-bounded disturbance using the proposed controller and the 
LQR controller  

 

Fig. 9: Angular velocity and control input for an input delay of 4 seconds under a sinusoidal norm-bounded disturbance using the proposed controller and the 
LQR controller  

 

Fig. 10: Angular velocity and control input for an input delay of 5 seconds under a sinusoidal norm-bounded disturbance using the proposed controller and the 

LQR controller  



Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE)                               51 
 

V. STOCHASTIC NORM-BOUNDED 

DISTURBANCE   

This section examines the performance of robust controllers 

when the system is subjected to stochastic norm-bounded 

disturbances. The stochastic disturbance utilized in this 

analysis is depicted in Fig.  11. 

  

 
Fig. 11: Stochastic norm-bounded Disturbance 

In this scenario, the stability of the closed-loop system is 

assured despite input delays between 1.5 and 5 seconds, and 

it successfully mitigates disturbances. Fig. s 12 to 16 

illustrate how different input delays of 1.5, 2, 3, 4, and 5 

seconds affect the system when subjected to a stochastic 

norm-bounded disturbance. 
  

 

Fig. 12: Angular velocity and control input for an input delay of 1.5 seconds under a stochastic norm-bounded disturbance using the proposed controller and the 
LQR controller  
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Fig. 13: Angular velocity and control input for an input delay of 2 seconds under a stochastic norm-bounded disturbance using the proposed controller and the 
LQR controller  

 

Fig. 14: Angular velocity and control input for an input delay of 3 seconds under a stochastic norm-bounded disturbance using the proposed controller and the 
LQR controller  

 

Fig. 15: Angular velocity and control input for an input delay of 4 seconds under a stochastic norm-bounded disturbance using the proposed controller and the 
LQR controller  
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Fig. 16: Angular velocity and control input for an input delay of 5 seconds under a stochastic norm-bounded disturbance using the proposed controller and the 

LQR controller  

Fig. s 12 to 16 demonstrate that the proposed controller 

delivered satisfactory outcomes, effectively eliminating the 

norm-bounded disturbance and mitigating the impact of time 

delays with high precision.  

 

VI . DISCUSSION AND LIMITATIONS OF 

PROPOSED METHOD 

A. Comparison between the Proposed Controller and the 

LQR Controller 

As depicted in the Fig. s of Subsection 3.3, the angular 

velocity and control input in the delayed system exhibit 

superior performance under the proposed controller 

compared to the LQR controller across three disturbance 

types: constant, sinusoidal, and random. To quantitatively 

assess these controllers, Tables I through III present a 

comparative analysis based on settling time and overshoot 

metrics for constant, sinusoidal, and stochastic disturbances, 

respectively. 

 
TABLE I 

 Comparison of the Performance of the Robust and LQR 

Controllers Under a Constant Norm-Bounded Disturbance  

Controller 

Criteria 

Settling Time 

(seconds) 

Overshoot 

(%) 

Robust Controller 10.73 18.70 

LQR Controller 11.09 57.75 

 
TABLE II 

 Comparison of the Performance of the Robust and LQR 

Controllers Under a Sinusoidal Norm-Bounded Disturbance 

Controller 

Criteria 

Settling Time 

(seconds) 

Overshoot 

(%) 

Robust 

Controller 
11.21 9.39 

LQR Controller 11.36 45.75 

 

 

TABLE III 

 Comparison of the Performance of the Robust and LQR 

Controllers Under a Stochastic Norm-Bounded Disturbance 

Controller 

Criteria 

Settling Time 

(seconds) 

Overshoot 

(%) 

Robust Controller 11.19 0.65 

LQR Controller 11.35 39.73 

 

Based on the results presented in the Fig. s of Subsection 

3.3 and the data summarized in Tables I through III, a 

comparison between the robust controller and the LQR 

controller reveals several significant performance 

differences. These differences will be discussed in detail 

below: 

 

A.  Performance under All Conditions: The predictive-

based 𝐻∞  Controller consistently outperforms the LQR 

Controller across various conditions, such as various time 

delays and various disturbances. One of the critical 

performance metrics, the settling time, is smaller for the 

predictive-based 𝐻∞  Controller. This indicates that the 

system reaches its desired steady state more quickly with less 

oscillation or deviation. Additionally, the overshoot, which 

is the extent to which the system exceeds its target value 

before settling, is also considerably smaller for the 

predictive-based 𝐻∞ Controller. 

• Response to Reference Speed: The predictive-based 

H∞ Controller exhibits the capability to reach the 

reference speed in a significantly shorter time compared 

to the LQR Controller. This rapid convergence to the 

desired speed ensures that the system operates efficiently 

and meets the performance expectations promptly. 

• Time-Delay Robustness: One of the standouts features 

of the predictive-based H∞ Controller is its robustness in 

the presence of time delays. When subjected to time 

delays, this controller can effectively reject nearly all the 

adverse effects, maintaining system stability. Even when 
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confronted with substantial time delays, such as 4 or 5 

seconds, the predictive-based H∞ Controller 

demonstrates significant resilience and stability. This 

robustness ensures that the system continues to perform 

optimally without being significantly affected by delays. 

• Smoothness of Control Input: The control input 

provided by the predictive-based H∞ Controller is 

markedly smoother than that of the LQR Controller. This 

smooth control input translates to improving the overall 

lifespan and reliability of the system. The reduced 

fluctuations and smoother transitions also contribute to 

enhanced performance and efficiency. 

In summary, the predictive-based H∞ Controller offers 

superior performance over the LQR Controller in various 

aspects, including faster settling times, reduced overshoot, 

robustness against time delays, and smoother control inputs. 

These attributes make the predictive-based H∞ Controller a 

more effective and reliable choice for controlling DC motor. 

 

B, Impact of Gamma Variations on Robust Controller 

Performance 

In this subsection, the performance of the robust 

controller under varying gamma values is evaluated. Table 

IV presents the settling time and memory state feedback gain 

(K) corresponding to different gamma values. As observed, 

among the gamma values of 0.3, 1, and 2, the case of 

 𝛾 = 0.3 exhibits the best performance, with the shortest 

settling time and the lowest control effort. 

 
TABLE IV 

 Evaluation of the Robust Controller's Performance Under 

Gamma Variations 

Robust 

Controller 

Gamma Variations 

𝛾=0.3 𝛾=1 𝛾=2 

Settling 

Time 

(second) 

11.19  11.64  11.68  

K -2.41 -1.52 -1.46 

 

C. Limitation of the Proposed Method   
In practical applications, not all state variables of a 

system can be directly measured due to inherent sensor 

limitations and increased cost. Although the proposed robust 

predictor-based controller was originally developed under 

the assumption of full state availability, real-world 

implementations require the integration of state estimation 

techniques to overcome these constraints. Moreover, it 

should be noted that the delay considered in this study is 

assumed to be constant; however, future research may 

extend the analysis to accommodate time-varying delays, 

thereby enabling a comprehensive evaluation of closed-loop 

stability under more realistic operating conditions. This 

extended investigation could facilitate the development of 

integrated observer-controller designs that effectively 

address both state estimation challenges and dynamic delay 

variations, ultimately enhancing the overall performance and 

robustness of the control system. The limitations and 

challenges of this research, along with potential directions 

for further advancement and suggestions for future studies, 

are discussed in the following: 

• Observer-Based Techniques: Observer-based techniques, 

such as employing a Luenberger observer or a Kalman filter 

([29] and [30]), can be effectively used to estimate 

unmeasured states from available output measurements. 

However, incorporating these observers into the robust 

predictor-based control framework in the time delay system 

presents challenges due to the interdependence between 

observer and controller dynamics. Precise tuning of the 

observer gain is essential to achieve rapid and accurate 

convergence of the estimation error, as any mismatch 

between the observer model and the actual system dynamics 

can significantly degrade performance. Future work could 

focus on developing integrated observer-controller designs 

that explicitly address these complexities. 

• Time-Varying Delays: In this study, the input delay is 

assumed to be constant. Extending the analysis to 

accommodate time-varying delays would allow for a more 

comprehensive evaluation of closed-loop stability under 

dynamic conditions. Given the inherent complexity of 

incorporating time-varying delays, dedicated investigation is 

warranted. Future research should explore delay-dependent 

robust observer designs, adaptive filtering techniques, or 

artificial intelligence-based estimation methods to enhance 

control performance in scenarios where delays vary with 

time. 

In the present study, the robust controller is designed 

using LMIs solved via MATLAB's YALMIP toolbox, 

demonstrating computational feasibility for the first-order 

DC motor system. However, for higher-order or more 

complex systems, the computational burden may increase 

significantly, potentially necessitating advanced 

optimization techniques or parallel computing strategies to 

achieve real-time performance. Moreover, practical 

implementations face additional challenges such as sensor 

noise, and unmodeled dynamics that can affect controller 

performance. Future research should focus on experimental 

validation and the development of robust, real-time 

computational methods to address these issues. 

VII. CONCLUSION 

In this paper, we propose a robust memory state feedback 

controller that is specifically designed to address input 

delays. By employing linear matrix inequality (LMI) 

conditions, we ensure the closed-loop stability of a first-

order DC motor system. Our research focuses on designing 

a robust controller for the first-order DC motor while 

accounting for input delays and norm-bounded disturbances 

across three scenarios: time-invariant, sinusoidal, and 

stochastic disturbances.  The findings indicate that by 

implementing a predictive vector, we can effectively 

eliminate time delays from the input by extending it up to 

five seconds—five times longer than what previous studies 

have achieved. Moreover, the application of our robust 

controller, we successfully dampen the effects of norm-

bounded disturbances across all three scenarios. 
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Furthermore, comparative analysis with an LQR controller 

reveals that our proposed robust controller consistently 

achieves lower overshoot, faster transient response, and 

superior disturbance attenuation, underscoring its enhanced 

performance over traditional LQR-based strategies. 

While our study assumes a constant input delay, in 

practical applications, delays may vary over time, and not all 

state variables can be directly measured due to sensor 

limitations and increased cost. This necessitates the 

integration of state estimation techniques, such as observer-

based methods, into the control framework. Extending the 

analysis to accommodate time-varying delays and 

developing integrated observer-controller designs represent 

promising directions for future research, enabling a 

comprehensive evaluation of closed-loop stability under 

realistic operating conditions. Future work will focus on 

extending the proposed approach to systems with time-

varying delays, and exploring integrated observer-controller 

designs to enhance its applicability in practical scenarios. 
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