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Abstract-- Super-resolution is a crucial task in image 

processing, enhancing the resolution of low-quality images for 

applications such as surveillance, remote sensing, and autonomous 

systems. Traditional methods often struggle to preserve fine 

details, leading to artifacts and reduced visual fidelity. This study 

introduces the Pretrained RU-SRGAN, an enhanced Super-

Resolution Generative Adversarial Network (SRGAN) that 

incorporates U-Net architecture, residual learning, and 

autoencoder pretraining to improve both image quality and 

computational efficiency, particularly in resource-constrained 

environments like UAVs. The goal of this research is to evaluate 

how these architectural modifications can enhance super-

resolution performance with limited data. Autoencoder 

pretraining enables the generator to leverage learned features 

from low-resolution images, accelerating convergence and 

improving high-resolution reconstructions. Experimental results 

show that Pretrained RU-SRGAN outperforms baseline models, 

achieving a PSNR of 25.7 dB and an SSIM of 0.83. These results 

highlight the model's ability to preserve fine details and structural 

integrity, making it particularly effective for real-time image 

enhancement in UAV applications. The Pretrained RU-SRGAN 

provides a robust solution for super-resolution tasks, balancing 

high-quality image reconstruction with computational efficiency, 

and is well-suited for practical deployment in dynamic, resource-

limited environments. 

 

Index Terms- Transfer Learning, UAV, Image Reconstruction, 

RU-Net, SSIM, PSNR  

I.  INTRODUCTION 

 significant quantity of data generated in our modern 

world consists of images, including photos captured by 

individuals and high-resolution images collected by satellites 

and security cameras. However, resolution loss is frequently 

encountered, making it very challenging to interpret and utilize 

data. Resolution loss refers to the decrease in sharpness and 

level of detail caused by a decline in the quality of an image. 

This decline could be attributed to various factors, such as 

compression techniques for storage, limitations in software or 

hardware, or environmental conditions during image capture. 

The most effective method to address this problem is through 

image reconstruction. Enhancing the visualization effect, 

clarity, and details of images using high-quality super-

resolution reconstruction can lead to improved accuracy and 
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reliability in target recognition [1]. Initially, methods such as 

interpolation [2], frequency-domain techniques [3], wavelet 

transform [4], [5], neighbor embedding [6], and sparse 

representation [7], [8] were employed to enhance the resolution 

in image processing. Later, machine learning techniques, such 

as random forest, were utilized to analyze low-quality images 

and predict high-quality characteristics [9]. 

There has been a rise in the number of super-resolution 

reconstruction models in the field of deep learning, 

incorporating techniques like convolutional neural networks 

(CNN) for image super-resolution. For instance, the super-

resolution convolutional neural network (SRCNN) [10], very 

deep super-resolution (VDSR) [11], and the super-resolution 

generative adversarial network, known as SRGAN [12]. 

Generative adversarial network (GAN) models have been 

extensively used in the context of super-resolution 

reconstruction problems. SRGAN is a sophisticated GAN 

model that enhances image clarity and realism by training a 

discriminator network and a generator network adversarially. 

SRGAN shows great promise in various practical 

applications by enhancing image quality and recovering 

missing details [13], [14]. Recently, researchers have utilized 

SRGAN to improve the quality of input images for 

classification purposes. The increased resolution from SRGAN 

enhances the quality of features available for classification 

models, resulting in better accuracy in tasks such as medical 

image classification [15], facial recognition [16], and scene 

classification [17]. Moreover, SRGAN has been employed to 

enhance images in the initial phase of object detection projects. 

By increasing the clarity of input pictures, SRGAN improves 

the feature maps used in detectors, leading to enhanced 

performance in object detection tasks, particularly in low-

quality images for detecting small objects, which in turn boosts 

the precision of object detection algorithms like YOLO and 

Faster R-CNN [18]. Furthermore, SRGAN is applied in tasks 

such as semantic segmentation and image generation within 

image-to-image translation projects. The improved resolution 

helps capture intricate details needed for these endeavors. 

Finally, SRGAN has been studied in self-driving systems to 

enhance low-resolution images from cameras, increasing the 

accuracy of object recognition and traffic sign detection [19]. 
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While the SRGAN model boasts impressive capabilities in 

super-resolution tasks, it is not without its limitations. Common 

challenges include noticeable distortions, visual artifacts, and a 

lack of critical fine details, which can compromise its 

effectiveness in certain applications. To address these 

shortcomings, ESRGAN (Enhanced Super-Resolution 

Generative Adversarial Network) builds upon the original 

SRGAN framework by introducing a sophisticated loss 

function that prioritizes perceptual quality over mere pixel-wise 

accuracy [20]. A key innovation in ESRGAN is the integration 

of Residual-in-Residual Dense Blocks (RRDB), which 

significantly enhance feature extraction. These blocks not only 

boost image fidelity but also effectively minimize artifacts, 

resulting in more natural and realistic high-resolution images. 

Taking this progression further, Real-ESRGAN (Real 

Enhanced Super-Resolution Generative Adversarial Networks) 

elevates the model's performance by focusing specifically on 

the challenges of real-world image degradation. Through an 

advanced training process and optimized architecture, Real-

ESRGAN adeptly handles common image artifacts, delivering 

enhanced visuals that are not only strikingly realistic but also 

free from typical GAN-induced imperfections [21]. 

Despite the advancements in SRGAN and its enhanced 

variants, several persistent challenges remain unaddressed, 

limiting their effectiveness. Notable issues include mode 

collapse and vanishing gradients during training, arising from 

the adversarial nature of GANs. These problems stem from the 

delicate balancing act between the generator and discriminator 

networks; if one overpowers the other, the training process 

converges to suboptimal results, often yielding poor-quality 

outputs. Moreover, GAN-based models are notoriously data-

hungry, requiring extensive datasets to achieve robust 

performance, which can be a significant limitation when 

working with specialized or resource-constrained applications. 

To overcome these challenges, we propose an upgraded 

SRGAN model that incorporates a series of innovative 

enhancements aimed at preserving critical image characteristics 

while delivering superior results. 

1) Redesigning the Generator Architecture with U-Net: 

We replace the original generator's residual blocks with a 

U-Net architecture, known for its exceptional ability to 

capture intricate details and spatial relationships. This 

modification enhances spatial resolution recovery while 

reducing the model’s overall complexity. By streamlining 

the network, we mitigate the risk of overfitting and enable 

the model to focus on fundamental low-level features 

essential for accurate image reconstruction, particularly in 

challenging domains like facial reconstruction. 

2) Integrating Residual Blocks within the U-Net: Our 

model incorporates residual blocks into both the encoder 

and decoder paths of the U-Net, creating a hybrid design 

that balances the benefits of U-Net and residual learning. 

This structure enhances the model’s perceptual 

capabilities, allowing it to retain hierarchical feature details 

while stabilizing the network. The residual blocks also help 

to reduce visual artifacts and distortions, resulting in more 

natural and realistic high-resolution images. 

3) Leveraging Transfer Learning with an Autoencoder 

Pretraining Step: To address the data hunger issue and 

improve the efficiency of training, we employ transfer 

learning. An autoencoder is initially trained on low-

resolution (LR) images to learn a compressed 

representation of the LR feature space. The learned weights 

from the autoencoder’s encoder are then transferred to the 

U-Net's encoder path. This initialization strategy offers 

several advantages: 

• It accelerates convergence by starting the 

training process with a network already familiar with 

the distribution of LR image features. 

• It boosts performance, particularly on datasets 

with limited training samples or significant variability, 

such as UAV-captured imagery. 

• It ensures that key characteristics of LR images 

are effectively preserved, enhancing the model's 

reconstruction accuracy. 

The novelty of our approach lies not only in the combination 

of U-Net with residual learning and transfer learning but also in 

how these techniques are synergistically applied to super-

resolution tasks for datasets with limited resources or 

variability, particularly UAV imagery. This hybrid architecture 

is introduced for the first time in our work and addresses key 

challenges in the super-resolution domain. The design’s 

streamlined architecture, coupled with its ability to achieve fast 

convergence, makes it particularly suitable for real-time 

applications such as UAVs and autonomous vehicles, where 

computational efficiency and speed are critical. 

Our approach also effectively addresses the issue of low 

dataset availability by leveraging autoencoder pretraining to 

extract salient features from low-resolution images. This 

pretraining step not only boosts performance on datasets with 

limited training samples but also enhances the model’s ability 

to generalize to highly variable data, ensuring robustness in 

real-world applications. 

We evaluated the effectiveness of our proposed 

enhancements using a dataset of UAV-captured images. UAV 

datasets often pose unique challenges, including small object 

sizes and inherent low-resolution qualities, making them an 

ideal testbed for super-resolution models. The experimental 

results demonstrate that our upgraded SRGAN outperforms the 

original SRGAN in terms of image fidelity and feature 

preservation. The enhanced clarity and detail provided by our 

model lead to significant improvements in downstream tasks, 

such as object detection, where high-quality inputs are critical. 

Our proposed model not only addresses the common 

limitations of SRGAN and its variants but also introduces a 

novel hybrid architecture that bridges the gap between data 
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efficiency and performance. By combining U-Net’s detailed 

feature extraction capabilities with residual learning and 

leveraging transfer learning, we provide a robust and scalable 

solution for super-resolution tasks, especially in resource-

constrained or high-variability datasets like UAV imagery. 

These advancements set a new benchmark for practical super-

resolution applications in fields ranging from surveillance and 

remote sensing to medical imaging and autonomous systems. 

II.  LITERATURE REVIEW 

Ever since its inception in 2017, the SRGAN [22] model has 

been widely used in numerous research projects due to its 

ability to enhance image quality for various purposes [23], [24], 

[25]. The primary structure of SRGAN, which consists of a 

generator and a discriminator, has proven successful in 

generating high-quality super-resolution images. In this section, 

we will explore the core design principles of SRGAN's 

generator and discriminator, providing detailed insight into its 

fundamental structure. GANs, a deep learning framework, 

comprise a generator and a discriminator as its two main 

components. Both of these neural networks are trained 

simultaneously in a competitive manner. The generator network 

is trained to produce fake data that resembles the input data 

distribution, while the discriminator network functions as a 

binary classifier to differentiate between real and generated 

data. Fig. 1. illustrates the design of the generator, which 

includes three primary elements: Convolutional layers, 

Residual blocks, and Upsampling blocks. Initially, the LR 

image is processed by the network and subsequently passes 

through a convolutional layer to create a feature map. It then 

goes through a PReLU (parametric rectifier linear unit) 

activation function [26]. The parametric ReLU allows negative 

values to have a negative slope instead of being set to zero. This 

enables the network to gather information from both positive 

and negative values, allowing for better feature extraction. 

Following this, the picture passes through 16 residual blocks, 

which include two convolutional layers, batch normalization, 

PReLU, and skip connections. Residual blocks help the 

network capture image details, while skip connections preserve 

feature flow between blocks, unaffected by vanishing gradients. 

After passing through the residual blocks, the input undergoes 

a convolutional layer, batch normalization, and an Elementwise 

sum block before moving on to two upsampling sections, which 

lead to an output image that is four times higher in resolution 

compared to the input image. The progressive enhancement of 

resolution is essential for improving image quality and 

producing high-quality images with fewer parameters. Each 

upscaling module consists of a convolutional layer, 

PixelShuffler, and PReLU. The PixelShuffler [27] is 

responsible for increasing the LR size by two times in every 

block and then by four times before sending it to the last 

convolutional layer. The resulting image should resemble an 

accurate depiction of the high-resolution image. 

SRGAN employs a traditional discriminator network, with 

the design of SRGAN's discriminator network illustrated in Fig. 

2. The primary elements of this network consist of 

convolutional layers, Leaky ReLU activation functions, and 

Batch Normalization (BN). The discriminator function is 

trained to distinguish between super-resolution images and real 

images. The input contains a high-quality image produced by 

the network or an image taken from the training dataset. Like 

the generator, it contains several convolutional layers for 

extracting features. The first step includes a convolutional layer 

followed by a Leaky ReLU activation. The next step consists of 

eight groups of three layers, with a convolutional layer, BN, and 

Leaky ReLU activation in each. The Leaky ReLU function has 

a parameter of 0.2, and Batch Normalization layers are 

intentionally added to accelerate network training and enhance 

overall generalization abilities. A dense layer is necessary to 

transform the multi-dimensional feature maps of the input 

image into a single-dimensional vector for classification. Next, 

Fig. 2. The basic design of discriminator in SRGAN 

           Fig. 1. The original architecture of generator in the SRGAN 
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the vector goes through an activation layer and is then passed 

through another dense layer to convert the 1024-sized one-

dimensional vector into a single one. The Sigmoid function is 

employed to transform the input value into 0 or 1, denoting 

binary categories. The discriminator's results range from 0 to 1, 

with values closer to 0 indicating fake images and values closer 

to 1 indicating real images. 

The loss of information in SRGAN is calculated based on 

feature maps from a previously trained deep neural network, 

usually the VGG network. Content loss, in contrast to mean 

squared error (MSE), is based on high-level image 

representations rather than pixel intensity differences, making 

it less reliant on exact pixel values. These depictions are derived 

from middle stages of the VGG model, which are better able to 

handle spatial differences. Therefore, the loss of content can 

more accurately represent the quality of an image by 

emphasizing the important high-level features that matter most 

to human visual perception. In SRGAN, the overall loss 

function is a combination of two parts: content loss for 

generator guidance, and adversarial loss for discriminator 

utilization. The adversarial loss plays a key role in 

differentiating genuine high-resolution images from those 

produced by the model, ultimately motivating the generator to 

produce increasingly convincing images that fool the 

discriminator. 

Content loss, known as VGG loss, is a crucial element in the 

SRGAN, as it is calculated from the output of the generator. 

Content loss determines image quality by measuring perceptual 

similarity. This method depends on comparing high-level 

features of the generated image with the ground truth, ensuring 

that the generated image retains crucial structural and textural 

details similar to how humans perceive visual information. To 

determine content loss, a pre-trained deep neural network, 

usually VGG or ResNet, processes both the generated image 

and the ground truth image, producing feature maps. These 

maps represent images at a high level, capturing edges, textures, 

and object structures. Content loss is described as the Euclidean 

distance between the feature maps of the generated and ground 

truth images, measuring the discrepancy of these higher-order 

features. 

Although different pre-trained networks can be utilized to 

extract these feature maps, VGG19 is frequently used, as it has 

been pre-trained on the ImageNet dataset. Nevertheless, studies 

indicate that better outcomes are achieved with deeper network 

layers, as they pay more attention to the small and detailed 

aspects of the image [28]. Using features from deeper layers like 

VGG54 usually results in superior perceptual quality compared 

to using earlier layers such as VGG19. The benefit of the deeper 

layers is that they are able to capture more complex and abstract 

image representations, resulting in sharper and more true-to-life 

images. When employing VGG19 as a pre-trained model, 

content loss is commonly calculated using a group of middle 

layers, often omitting the final max pooling layer. This occurs 

because the innermost layers of VGG retain a high-level 

semantic understanding without significantly decreasing the 

spatial resolution. 

A.  Related Works 

In this section, we will discuss new advancements and 

changes in SRGAN and its variations that have led to improved 

visual quality and image clarity. Ren and Li [29] in 2021 

introduced methods that include a parallel generative 

adversarial network structure using attention mechanism and 

multi-scale feature fusion within the SRGAN framework. This 

method combines a dual generator and discriminator model 

with an attention module in order to understand multi-scale 

features and incorporate high-frequency data across various 

scales in the residual network. The results from the experiment 

show that this technique greatly enhances the restoration of 

image details, as indicated by its performance on the benchmark 

datasets Set5, Set14, and BSD100. The suggested approach 

demonstrates a significant enhancement in visual and 

quantitative metrics, obtaining increased PSNR and SSIM 

values in contrast to conventional approaches such as Bicubic, 

SRCNN, SRResNet, and SRGAN. 

In 2021, Yin Wang presented a new image super-resolution 

model named U-Net SRGAN, designed to enhance the 

perceptual quality of high-resolution images produced from 

low-resolution inputs. This model improves upon existing 

methods such as SRGAN and ESRGAN with several important 

upgrades. The Residual-in-Residual Self-Calibrated 

Convolution with Pixel Attention (RRSCPA) block in the 

generator is more efficient and effective at capturing details 

than prior architectures. The discriminator employs a U-Net 

design, offering feedback at a per-pixel level to assist the 

generator in creating more lifelike images. The conventional 

VGG-based perceptual loss is replaced with LPIPS (Learned 

Perceptual Image Patch Similarity) loss, enhancing alignment 

with human visual perception and elevating the quality of the 

generated images. The U-Net SRGAN outperforms other 

models, including SRGAN and ESRGAN, in visual quality and 

LPIPS scores, as demonstrated in experimental results [30]. 

In 2023, Hrishikesh et al. presented a new deep network 

structure incorporating a V-SRGAN based on Relativistic 

Average GAN (RaGAN) and VGG19 architecture. The method 

emphasizes improving visual clarity and recovering texture in 

high-resolution images. Important advancements consist of 

incorporating multi-scale receptive field blocks (RFBs) in the 

generator for capturing more intricate texture details and a 

lightweight design with smaller kernels to decrease 

computational complexity. They obtained better outcomes than 

current cutting-edge techniques, as indicated by PSNR and 

LPIPS metrics [31]. 
In 2023, Wu unveiled an upgraded model of SRGAN 

designed to enhance image quality. Major changes involve 

eliminating Batch Normalization layers, adding a novel 

Residual Block with attention mechanisms for better feature 

extraction, and streamlining loss functions to only two 

components - Adversarial Loss and L1 Loss. These 

improvements result in superior feature extraction, enhanced 

face restoration, and artifact removal, producing images of 

higher visual quality that better match human perceptual 

standards, even with a slight decrease in PSNR. The findings 

provide important perspectives for progressing research on 

image super-resolution [32]. 
Finally, Sun et al. introduced TESRGAN, an innovative 

model for image super-resolution that integrates Transformer 

architecture with CNNs. It uses a Residual in Residual Dense 

Block Network (RRDBNet) for feature extraction and a Dense 

Residual Transformer module to capture global dependencies 
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and complex textures. TESRGAN demonstrates superior 

performance with a Peak Signal-to-Noise Ratio (PSNR) of 

31.67 dB and a Structural Similarity Index Measure (SSIM) of 

0.88, outperforming ESRGAN in convergence rates and 

stability. The study emphasizes the potential of hybrid deep 

learning architectures in enhancing image processing tasks [33]. 

III.  METHODOLOGY 

To enhance the efficiency of SRGAN, we proposed a series 

of modifications to the generator design while retaining the 

original discriminator architecture. The discriminator’s binary 

classification task was deemed well-suited to the super-

resolution context, and thus, its architecture remained 

unchanged throughout our experiments. Our primary focus was 

on testing various generator designs to assess their individual 

contributions to performance improvements. In this study, we 

systematically introduced and evaluated three distinct models 

to facilitate an ablation analysis, isolating the impact of each 

design change: 

1) U-SRGAN: The residual blocks in the generator were 

replaced with a U-Net architecture. This modification 

aimed to improve the model's ability to capture intricate 

details and enhance spatial resolution recovery. 

2) RU-SRGAN: Building upon U-SRGAN, residual 

blocks were incorporated within the U-Net architecture to 

leverage the strengths of both residual learning and U-

Net’s detailed feature extraction capabilities. This hybrid 

design was intended to stabilize the network and further 

improve image fidelity. 

3) Pretrained RU-SRGAN: To address the data-hungry 

nature of GAN-based models and enhance performance, 

the U-Net generator in RU-SRGAN was pretrained using 

an autoencoder on low-resolution images. This pretrained 

encoder provided a robust initialization, enabling faster 

convergence and more accurate reconstruction, particularly 

in datasets with limited or challenging samples. 

These models were introduced and systematically evaluated 

to provide a comprehensive understanding of how each 

architectural enhancement contributes to the overall 

performance. The results of this ablation study are detailed in 

the following sections. 

A.  Model Description  

    1)  U-SRGAN 

Originally created for biomedical image segmentation [34], 

[35], the U-Net architecture has gained popularity across 

various computer vision tasks for its effective handling of 

segmentation issues and its ability to capture local and global 

features. U-Net was developed with a focus on situations where 

there is a lack of training data. We chose U-Net due to limited 

data, as it efficiently utilizes information through augmentation 

and network structure design. Skip connections enable U-Net to 

merge low-level features, such as edges and textures from early 

layers, with high-level abstract features like shapes and patterns 

from deeper layers. This guarantees that intricate elements are 

preserved in the final segmentation, even in complex images. 

The structure of U-Net is symmetrical, as the encoder captures 

features from the input image while the decoder reconstructs 

the segmentation map. This balance allows it to effectively 

learn both local and global contexts simultaneously, which is 

essential for pixel-wise segmentation tasks. In our research, we 

removed the segmentation head from the U-Net and solely 

utilized the feature extraction capabilities of the network. Fig. 

3. shows how we implemented U-Net in the generator 

architecture. 

The revised SRGAN's generator network utilizes a U-Net-

style design specifically designed for super-resolution 

purposes, increasing the input image size by a factor of 4. The 

network takes in a small 64×64×3 image and transforms it into 

Fig. 3. The Generator in U-SRGAN: The residual blocks of the SRGAN architecture are replaced by a U-Net structure, resulting in an enhanced design. 



16                                                                                                          Volume 4, Number 3, November 2024 

a larger 256×256×3 image through gradual processing. The 

design combines hierarchical feature extraction and skip 

connections for successful image super-resolution. The 

generator starts with a starting convolutional layer (9x9 

kernel, 64 filters, stride 1) and then uses a Parametric ReLU 

(PReLU) activation function to identify basic features. The 

encoder section of the U-Net gradually reduces the spatial 

dimensions while simultaneously increasing the feature map 

size. Every encoder block comprises of convolutional layers 

with a 3x3 kernel, batch normalization, and ReLU activation, 

then followed by 2x2 max-pooling for downsampling. The 

encoder captures image features at different scales and 

resolutions, ranging from 32×32 to 4×4, while increasing the 

number of feature maps from 64 to 512. 

During the bottleneck phase, 512 feature maps are generated 

by convolutional layers to extract deep features. The decoder 

mirrors the encoder, gradually increasing the spatial dimensions 

until they reach their original size. Up-convolutions of size 2x2 

are utilized for upsampling in the transposed convolutional 

layers, and connections from the encoder are combined with the 

decoder at every level. These shortcuts maintain spatial 

information and help regain lost features from downsampling, 

enhancing the quality of the reconstruction. The decoder's 

output is further refined through residual learning blocks and 

pixel shufflers. The pixel shuffler layers upscale images using 

a subpixel technique to enhance image quality by preserving 

smooth transitions and detailed features in the super-resolved 

image. The high-resolution image is produced by the last 

convolutional layer with a 9x9 kernel. Residual learning is 

applied in certain stages of the network through element-wise 

addition to prioritize the reconstruction of intricate details such 

as textures and edges. Overall, the design effectively merges U-

Net's hierarchical feature extraction and skip connections with 

super-resolution-specific enhancements like pixel shuffling and 

residual learning, enabling it to generate high - quality super-

resolved images. 

    2)  RU-SRGAN 

Utilizing residual blocks in U-Net enhances performance by 

addressing issues of vanishing gradients and feature recycling. 

Residual connections allow the transfer of low-level and high-

level features between layers, facilitating the efficient learning 

of complex patterns within the network. This is particularly 

beneficial in U-Net, as skip connections already retain spatial 

information, while residual blocks further improve fine detail 

reconstruction by focusing on learning the residual rather than 

the complete mapping. This leads to quicker convergence, 

enhanced gradient flow, and more accurate reconstructions, 

especially for high-frequency details in tasks such as super-

resolution. Adding more layers in deep CNNs can result in a 

decrease in training accuracy due to vanishing gradients. 

Residual connections solve this problem by passing the input of 

each block through a one-by-one convolutional layer and 

occasionally a BN layer to the output, followed by ReLU 

activation. This enables faster propagation of each block's input 

through the residual connections, producing a neural network 

with fewer parameters while maintaining similar or improved 

performance. RU-Net, a U-Net that incorporates residual 

blocks, has achieved success in various tasks [36], [37], [38]. 

Fig. 4. shows the residual block in the U-Net design to 

improve gradient flow and enhance learning efficiency in our 

Fig. 5. The Generator of RU-SRGAN 

Fig. 4. A residual block used in the architecture of our RU-SRGAN 
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generator architecture. The block is made up of two primary 

paths: a sequential path containing convolutional layers and a 

shortcut connection that skips the convolutions. The 

consecutive journey starts with a 1x1 convolutional layer, 

succeeded by batch normalization. The aim of the 1x1 

convolution is to decrease or align the size of the input feature 

maps, guaranteeing they can work with the residual connection. 

This is succeeded by a 3x3 convolutional layer, which handles 

spatial details, followed by another layer for batch 

normalization. After the 3x3 convolution, a ReLU activation 

function is used to bring in non-linearity, helping the block 

understand intricate patterns and connections within the data. 

Fig. 5. illustrates the modified U-Net-based architecture with 

residual blocks proposed for RU-SRGAN model. The system 

processes a LR picture as an input and produces a HR result, 

enlarging the input by a factor of 4. The structure merges U-

Net's hierarchical feature extraction abilities with the effective 

gradient flow and learning stability offered by residual 

connections. The combination of U-Net's skip connections with 

residual blocks and GAN training objectives creates a highly 

effective RU-SRGAN for generating detailed and visually 

realistic super-resolved images. Similar to the previous version, 

U-SRGAN, we kept the discriminator of SRGAN unchanged 

(see Fig. 2). 

    3)  Pretrained RU-Net 

The Autoencoder and U-Net fusion is a new deep learning 

approach put forward for segmentation and classification. The 

U-Net model architecture and Autoencoders were selected after 

analyzing various deep learning-based model architectures 

[39], [40], [41]. The design of the model offers a hopeful 

approach for capturing important characteristics, particularly in 

tasks like image segmentation, with improved effectiveness, 

reduced overfitting, and increased ability to generalize. An 

unsupervised artificial neural network known as an 

Autoencoder consists of two parts: an encoder and a decoder. 

The encoder in autoencoder learns to compress and encode data 

effectively, while the decoder part learns to reconstruct the data 

from the encoded representation to match the original input as 

closely as possible. The primary concept when constructing an 

Fig. 6. The architecture of proposed autoencoder designed to reconstruct the low-resolution images of our dataset 

Fig. 7. Once the autoencoder is trained individually, the encoder block weights will be transferred to the corresponding blocks in the RU-net integrated in the 

SRGAN generator. 
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autoencoder is that the encoder block maintains identical 

structure in both the autoencoder and RU-Net models as 

illustrated in Fig. 6. Even though skip connections are not 

included in the decoder of the autoencoder, the weights 

obtained from training the autoencoder on our prepared dataset 

were utilized as initial weights for the RU-Net encoder block in 

the model, as shown in Fig. 7. This approach of training the U-

Net with pretrained encoder weights can significantly 

accelerate the training. 

Every encoder block in our autoencoder aims to increase the 

quantity of feature maps while reducing the spatial size of the 

input data. Each encoder block utilizes a residual block, as 

shown in Fig. 4, followed by a max pooling layer to decrease 

the dimensionality of the input data while preserving key 

features. On the contrary, every decoder block carries out the 

opposite process of its encoder block counterpart. It converts 

the reduced representation from the encoder block to the 

original spatial dimensions, with a reduction in the number of 

feature maps. This is done by adding upsampling layers to each 

decoder block in order to increase the spatial dimensions of the 

feature maps. Initially, we inputted the LR images into an 

autoencoder and then proceeded to train it to reconstruct the 

original images. We utilized an Adam optimizer and mean 

square error loss function for training our autoencoder model 

for 3000 epochs until achieving over 90% accuracy. 

Afterwards, we transferred the encoder block weights to the 

RU-Net incorporated in the SRGAN generator. 

B.  Loss Function 

In SRGAN, the total loss function is not just one function, as 

it is made up of two loss components with varying weights. 

 

𝐿𝑆𝑅𝐺𝐴𝑁 = 𝛼  𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛽  𝐿𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙                 (1) 

In Equation (1), α and β represent coefficients that balance 

various loss components. Content Loss assesses how similar the 

generated high-resolution image is to the original high-

resolution image, helping the model accurately depict the core 

components and layout of the original image. Two ways to 

measure content loss in SRGAN are Pixel-wise Mean Squared 

Error (MSE), a standard method that can lead to images 

appearing too smooth without fine details, and Perceptual Loss 

(VGG Loss), which uses features from a pre-trained VGG 

network to evaluate similarity. This approach better captures 

important sensory details. The MSE loss does not effectively 

represent the variations in image texture at the pixel level. A 

high-resolution image pixel consists of various combinations, 

and the MSE loss typically averages these combinations, 

resulting in an unrealistic comparison to the ground truth. In 

order to address this problem, the initial SRGAN model used a 

VGG loss which was calculated by comparing the feature maps 

generated by the VGG-19 model using Euclidean distance. 

Equation (2) represents the perceptual loss function. 

 

𝐿𝑝𝑒𝑟 =
1

𝑊𝑖,𝑗𝐻𝑖,𝑗

∑  
𝑊𝑖,𝑗

𝑥=1
∑  

𝐻𝑖,𝑗

𝑦=1 (Φ𝑖,𝑗(𝐼𝐻𝑅)𝑥,𝑦 −

Φ𝑖,𝑗(𝐺(𝐼𝐿𝑅))𝑥,𝑦)
2

                                                                                       (2) 

 

𝑊𝑖,𝑗 represents the width dimension of feature maps in the VGG 

network. 𝐻𝑖,𝑗   represents the height dimensions of the feature 

maps in the VGG network. Φ𝑖,𝑗 denotes the feature map 

produced by the j-th convolutional layer preceding the i-th 

convolutional layer in the network. 𝐼𝐻𝑅 represents a high-

resolution picture. 𝐼𝐿𝑅 stands for a low-quality picture. 

Therefore, 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 can be replaced by 𝐿𝑝𝑒𝑟 in (1). 

An often-used choice for adversarial loss in SRGAN is the 

Binary Cross Entropy (BCE) loss, employed to train the 

discriminator and distinguish between real high-resolution 

images and generated images. 

 

 𝐿𝑎𝑑𝑣 = −𝐸𝑟𝑒𝑎𝑙[log(𝐷(HR))] − 𝐸𝑓𝑎𝑘𝑒 [log (𝑙 − 𝐷(G(LR)))]              (3) 

Equation (3) defines 𝐸𝑟𝑒𝑎𝑙  and 𝐸𝑓𝑎𝑘𝑒 as expectations for real 

and fake image distributions, respectively, with D as the 

Discriminator network, HR as the Real high-resolution image, 

and G(LR) as the high-resolution image generated by the 

Generator network from a low-resolution input. 

C.  Evaluation Metrics 

    1)  PSNR 

The numerical measurement commonly used for evaluating 

image quality is known as PSNR, which stands for Peak Signal-

to-Noise Ratio. It evaluates the level of distortion by comparing 

the initial signal with the compressed or reconstructed one. The 

PSNR quantifies the difference between the maximum possible 

signal power and the power of the signal that has been altered. 

Greater PSNR values, measured in decibels (dB), suggest 

improved image quality with reduced distortion, whereas lower 

values indicate inferior quality and increased distortion. This 

measurement utilizes Mean Squared Error (MSE) to compute 

the average squared discrepancy between matching pixels in the 

initial and altered signals. The PSNR scale is calculated using a 

logarithmic function applied to the MSE, as in (4). 

 

𝑃𝑆𝑁𝑅 = 20log10 
𝑀𝑎𝑥𝐼

√𝑀𝑆𝐸
                            (4) 

MaxI is the highest attainable pixel value found in an image. 

MSE is the average of the squared discrepancies between 

matching pixels in two images. 

 

𝑀𝑆𝐸 =
1

𝑀∗𝑁
∑  𝑁

𝑖=1 ∑  𝑀
𝑗=1 (𝑓𝑖𝑗 − 𝑓𝑖𝑗

′ )
2
                  (5) 

Equation (6) illustrates how 𝑓𝑖𝑗 represents the pixel values of 

the original high-resolution image and 𝑓𝑖𝑗
′  represents the pixel 

values of the image after reconstruction. M represents the width 

of the image while N represents the height. 

    2)  SSIM 

SSIM, also known as Structural Similarity Index, is a 

commonly used metric that evaluates the similarity of images 

based on their structural intricacies and pixel values to gauge 

their perceived quality. It assesses luminance, contrast, and 

structure by comparing nearby pixel groups in both original and 

modified images. Brightness similarity is evaluated by 

luminance, contrast levels are measured by contrast, and pattern 

and texture similarity are determined by structure. Combining 

the calculated component scores creates an index ranging from 

0 to 1, with 1 indicating full similarity and 0 indicating complete 

dissimilarity. SSIM provides a more meaningful evaluation by 

taking into account human visual perception and image 

structure, unlike conventional metrics like PSNR. 
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𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2 +𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                      (6) 

In Equation (6), x represents the original high-resolution 

image. y is the reconstructed image. The mean values of the 

images are denoted by 𝜇𝑥 and 𝜇𝑦, while the variances are 

𝜎𝑦
2 and 𝜎𝑥

2. The covariance between the two images is 𝜎𝑥𝑦. 

IV.  EXPERIMENTAL RESULTS 

A.  Dataset Collection and Preprocessing  

In this study, we utilized the Pix4Dmatic dataset, which 

comprises high-resolution images captured by unmanned aerial 

vehicles (UAVs). These images are in .JPG format with 

resolutions ranging from 12 to 20 megapixels per image, 

depending on the camera specifications. The dataset 

encompasses diverse scenarios, including industrial, 

agricultural, and urban settings, with some images captured 

using multi-spectral sensors while others use RGB sensors. 

These high-quality UAV-captured images are particularly well-

suited for super-resolution tasks due to their rich details and 

variety of textures and features. For our research, we selected a 

subset of 250 images from the dataset. These images were 

specifically chosen from urban environments to ensure 

consistent content and representation. The original resolution of 

the images was 6000 × 4000 pixels, reflecting the high fidelity 

of UAV imagery.  

However, due to computational constraints, the images were 

resized to a standardized resolution of 256 × 256 pixels. This 

resizing step was necessary to ensure feasible memory usage 

and processing speed while maintaining sufficient details for 

super-resolution training. The dataset was divided into training 

and testing subsets to facilitate the training and evaluation of 

our model. Specifically, 80% of the images were allocated for 

training, while the remaining 20% were set aside for testing. 

This division ensures a robust framework for model evaluation 

and generalization to unseen data. To prepare the dataset for 

training the SRGAN model, a systematic preprocessing 

pipeline was implemented to create paired datasets of low-

resolution (LR) and high-resolution (HR) images. The 

availability of such paired data is essential for supervised 

learning tasks in super-resolution. The first step involved 

resizing the original images to a standardized high-resolution 

size of 256 × 256 pixels. This resizing step balanced 

computational efficiency and detail retention, ensuring the HR 

images maintained sufficient quality for effective model 

training. 

Following the resizing, the HR images were downsampled 

by a factor of 4 using bicubic interpolation to generate 

corresponding LR images. The resulting LR images, with 

dimensions of 64 × 64 pixels, simulate real-world conditions of 

low-quality image acquisition. This step ensures that the 

SRGAN learns to effectively map degraded LR inputs to their 

corresponding HR counterparts during training. To ensure 

compatibility with the generator's output layer, which utilizes a 

tanh activation function, both the LR and HR images were 

normalized to the range [-1, 1]. This normalization step is 

critical as it improves the numerical stability of the model and 

facilitates faster convergence during training. By standardizing 

the pixel values, the model can focus on learning meaningful 

features rather than being affected by scale differences in the 

data.  

The Python programming language, along with the 

TensorFlow framework, was used to implement SRGAN for 

this experiment. The model was trained on a machine operating 

Windows 10, equipped with an Nvidia GeForce RTX 2060 

GPU with 6 GB of memory. The Adam optimizer was 

employed with β1=0.9 and a learning rate of 1×10−4, and 

finally the number of epochs was set to 5000. 

The standard SRGAN, which relies heavily on deep residual 

blocks, exhibited a peak GPU memory usage of approximately 

4.8 GB during training. The proposed U-Net-based SRGAN 

(U-SRGAN) design, which replaces residual blocks with a U-

Net encoder-decoder structure, resulted in a reduction in 

memory usage to 4.2 GB, attributed to the more structured 

feature extraction process. However, the RU-Net and pre-

trained RU-Net models exhibited slightly higher memory 

consumption at 4.6 GB and 4.7 GB, respectively, due to the 

additional residual connections and the incorporation of pre-

trained encoder weights. 

Regarding runtime efficiency, a full training session of the 

baseline SRGAN took approximately 48 hours for 5000 epochs, 

while the U-SRGAN variant reduced this to 42 hours due to 

improved feature reuse. The RU-Net model required 44 hours, 

whereas the pre-trained RU-Net variant demonstrated the best 

efficiency, completing training in 37 hours. This reduction is 

attributed to the transfer learning strategy, which provided a 

well-initialized feature extraction process, allowing faster 

convergence. 

B.  Background 

We created several designs to conduct an ablation 

comparison, aiming to evaluate the effectiveness of 

incorporating each component into the generator of the 

SRGAN. Training GAN networks poses a major challenge, as 

it necessitates extensive  

datasets containing thousands of images. Yet, the dataset we 

have consists of only 250 images, which is not enough for 

effectively training a strong GAN model. In order to overcome 

this drawback, we integrated designs such as U-Net, RU-Net, 

and pretrained RU-Net into the generator by substituting the 

original residual blocks. Our suggested networks were selected 

for their capacity to excel in image reconstruction tasks even 

when trained on limited datasets. U-Net is famous for its 

powerful feature extraction and accurate localization abilities, 

which make it highly effective in situations with limited data. 

RU-Net enhances U-Net by incorporating residual connections 

to improve gradient flow and address vanishing gradients in 

training. Ultimately, utilizing a pre-trained RU-Net takes 

advantage of transfer learning, paving the way for improved 

generalization even with restricted training data. Our goal in 

incorporating these structures was to enhance convergence, 

combat overfitting, and ultimately enhance the quality of the 

produced high-resolution images. This method enabled us to 

assess how various changes to the architecture impact the 

GAN's performance in data-limited scenarios. 

The pre-trained RU-Net utilized transfer learning by first 

training an autoencoder to rebuild LR images. During the 

pretraining stage, low resolution images were fed into the 

autoencoder and trained for 3000 epochs until the accuracy was 
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around 90%. In Fig. 8, the accuracy increased consistently as 

the loss decreased during training. After finishing the training 

of the autoencoder, the encoder's pretrained weights were 

moved to the encoder part of the RU-Net which is included in 

the generator of SRGAN. This method of transfer learning gave 

the generator a powerful starting point, speeding up its progress 

and improving its capacity to identify important characteristics 

in low-resolution inputs. Through utilizing the pretraining 

phase, RU-Net was more prepared to address the difficulties 

presented by small datasets and the inherent volatility of GAN 

training. This procedure enhanced both the generator's ability 

to reconstruct high-resolution images and its learning 

efficiency, leading to more stable results and reducing 

overfitting while improving overall quality. 

C.  Ablation Comparison 

TABLE I 

          Final PSNR and SSIM Values for Each Model 

Model PSNR (dB) ↑ SSIM ↑ 

SRGAN 23.877 0.727 

U-SRGAN 24.843 0.759 

RU-SRGAN 25.807 0.795 

Pretrained RU-

SRGAN 
25.795 0.832 

 

The performance of the four models—SRGAN, U-SRGAN, 

RU-SRGAN, and Pretrained RU-SRGAN—was evaluated 

using PSNR and SSIM, two widely accepted metrics for 

assessing image quality and structural fidelity. The quantitative 

results are summarized in Table I, while Fig. 9 and Fig. 10 

illustrate the progression of PSNR and SSIM across epochs. 

The Pretrained RU-SRGAN achieved the second highest PSNR 

(25.795 dB) and highest SSIM (0.832), demonstrating its 

superior capability in generating high-quality images with fine 

details and structural integrity. This model's performance 

highlights the advantages of integrating transfer learning with 

RU-Net architecture in the generator. We have assumed that 

using the pretrained weights only helps the faster convergence. 

RU-SRGAN also performed well, achieving a PSNR of 25.807 

dB and SSIM of 0.795, slightly below the pretrained variant. 

These results emphasize the benefits of the residual U-Net 

structure for improving image reconstruction. The U-SRGAN 

achieved intermediate results, with a PSNR of 24.843 dB and 

SSIM of 0.759, indicating an improvement over the baseline 

SRGAN. The baseline SRGAN exhibited the lowest 

performance, achieving a PSNR of 23.877 dB and SSIM of 

0.727. This result underscores the limitations of the standard 

SRGAN generator and the need for architectural enhancements 

like U-Net or RU-Net to achieve higher-quality outputs. 

Fig. 8. The accuracy and loss figures for autoencoder. We trained the autoencoder 3000 epochs to reconstruct the LR images so that we can transfer the weights 

to the RU-Net 

Fig. 9.  PSNR progression across epochs for all models 

Fig. 10. SSIM progression across epochs for all models 
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In the PSNR plot, Fig. 9, all models show a consistent 

increase during the initial training epochs, reflecting successful 

learning and improved reconstruction accuracy. The Pretrained 

RU-SRGAN consistently outperforms other models across all 

epochs, demonstrating the effectiveness of pretraining in 

accelerating convergence and enhancing performance. 

Similarly, in the SSIM plot, Fig. 10, the Pretrained RU-SRGAN 

achieves the best structural similarity, with a noticeable 

performance gap compared to the other models, especially after 

convergence. These results highlight the effectiveness of 

combining advanced network architectures with transfer 

learning to achieve state-of-the-art performance in super-

resolution tasks. 

The findings showcased the effectiveness of different 

SRGAN models in enlarging small LR images measuring 

64×64 by 4 times. The regular SRGAN and U-SRGAN models 

show they can increase the size of low-resolution images and 

also bring back some details. Nonetheless, these models 

produce visible defects that impact the visual appearance of the 

generated images. The origins of the artifacts could be due to 

restrictions in the structure or loss functions utilized, since these 

models do not have particular improvements to adequately 

retain spatial information or address inconsistencies in 

reconstruction. However, RU-SRGAN and Pretrained RU-

SRGAN show superior results compared to SRGAN and U-

SRGAN. These models rely on the utilization of residual 

blocks, which are essential for their exceptional performance. 

Residual blocks enhance the model's capacity to capture and 

transmit advanced features, making the training process more 

stable and improving the reconstruction of intricate details. 

Therefore, RU-SRGAN produces more defined results with less 

imperfections, closely mirroring the high-quality HR images. 

The pre-trained RU-SRGAN also gains advantages from its 

initial training on a vast dataset, which helps it perform well on 

new data and generate visually appealing outcomes with 

enhanced texture and edge sharpness. Overall, the use of 

residual blocks in RU-SRGAN and Pretrained RU-SRGAN 

models demonstrates their effectiveness in super-resolution 

tasks. While SRGAN and U-SRGAN struggle with artifacts and 

limited detail reconstruction, the advanced architecture of RU-

SRGAN models achieves a notable improvement in both 

fidelity and perceptual quality, setting a strong benchmark for 

super-resolution performance. Fig. 11. shows some examples 

created by our models studied. 

D.  Benchmark Comparison 

In this section, we focused on evaluating the performance of 

the pretrained RU-SRGAN model, which incorporates U-Net 

architecture, residual learning, and transfer learning through 

pretraining on autoencoders to improve the reconstruction of 

high-resolution images from low-resolution inputs. This model 

was compared against several benchmark models, including 

Bicubic, SRCNN, ESRGAN, EDSR, and EnhanceNet (see 

Table II). The pretrained RU-SRGAN outperformed these 

models in both PSNR and SSIM, demonstrating superior image 

quality and structural similarity. 

While EDSR, enhanced deep super-resolution, performed 

well, particularly in PSNR, the pretrained RU-SRGAN excelled 

in SSIM, a metric more closely related to perceptual quality. 

This is largely due to the use of residual blocks, a feature shared 

with EDSR, which enhances the model's ability to recover high-

frequency details. The incorporation of U-Net and autoencoder 

pretraining in our model provided a significant advantage in 

perceptual quality, highlighting the effectiveness of combining 

advanced architectures and transfer learning to achieve state-of-

the-art results in super-resolution tasks. Fig. 12 illustrates 

qualitative comparisons between our models and other well-

known SR models. 

Fig. 11. Ablation comparisons on our proposed model through created samples 
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TABLE II  

Comparison with State-of-the-art Model 
 

 

E.  Validation of Generalization Across Diverse Datasets 

To substantiate the generalizability and robustness of the 

pretrained RU-SRGAN model, we conducted experiments on a  

brain imaging dataset, specifically using the BraTS (Brain 

Tumor Segmentation) dataset. The BraTS dataset is widely 

recognized for its high-quality multimodal MRI scans, 

providing a valuable benchmark for assessing the performance 

of super-resolution techniques in medical imaging. By 

demonstrating the effectiveness of our models on this dataset, 

we aim to establish that their performance is not restricted to 

UAV imagery and that their results are not coincidental. 

The experimental results reveal that our model significantly 

outperforms traditional methods such as bicubic interpolation, 

SRCNN, and ESRGAN in reconstructing high-resolution brain 

images. The comparisons highlight that our model is capable of 

preserving fine anatomical details, enhancing structural clarity, 

and reducing artifacts, which are critical in applications like 

medical diagnostics. These findings, as shown in Table IIII, 

underscore the adaptability of our models to diverse datasets, 

reinforcing their potential for broader applications.  

The inclusion of results on the BraTS dataset supports our 

claim that the proposed models are not dataset-specific and are 

generalizable to other domains. This experiment demonstrates 

the ability of our model to handle distinct image characteristics, 

further validating their robustness and versatility. 

Consequently, this enhances the applicability of pretrained RU- 

 

SRGAN across fields where high-resolution imagery is 

essential, such as in both aerial and medical imaging. 

V.  DISCUSSION 

The integration of autoencoder pretraining into the 

Pretrained RU-SRGAN model significantly enhances both the 

efficiency and the practicality of the system for real-time 

applications. By transferring the fine details learned from low-

resolution images directly into the GAN architecture, our model 

not only accelerates convergence but also improves the quality 

of high-resolution reconstructions. This pretraining strategy 

allows the generator to effectively use prior knowledge from 

the autoencoder, reducing the reliance on extensive training 

datasets and minimizing the time required to adapt to new or 

limited data. 

This approach is particularly advantageous in UAV-based 

applications, where rapid image processing and computational 

efficiency are essential. UAVs often operate in environments 

with limited computing resources and variable data quality, 

such as low-resolution images captured under different 

environmental conditions. By leveraging the pretrained weights 

from the autoencoder, our model ensures that fine-grained 

image details are preserved and efficiently reconstructed, 

without incurring high computational costs. This makes the 

model well-suited for on-the-fly image enhancement and real-

Models Metrics Bicubic SRCNN ESRGAN EDSR 
EnhanceN

et 

Our 

model 

Pix4Dmatic 
PSNR (dB) ↑ 21.0 23.5 24.5 26.3 25.5 25.7 

SSIM ↑ 0.45 0.55 0.63 0.74 0.67 0.83 

BraTS 
PSNR (dB) ↑ 28.42 30.48 31.35 32.15 32.12 32.26 

SSIM ↑ 0.81 0.86 0.88 0.89 0.89 0.89 

Fig. 12.  Qualitative comparisons between SR models 
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time decision-making, as required in fields like surveillance, 

remote sensing, and autonomous navigation, where timely and 

accurate image processing is critical. 

Thus, the pretrained RU-SRGAN model offers a robust 

solution for super-resolution tasks in UAV systems, balancing 

the trade-off between image quality and computational 

efficiency. This makes it an ideal choice for scenarios where 

high-quality image enhancement is needed within a limited 

time-frame, providing a scalable and resource-efficient 

approach to real-world image reconstruction challenges. 

It is crucial to highlight that these results were not obtained 

by chance but through a thorough investigation of various 

architectures. In our initial tests, we evaluated the R2-U-Net  

(Residual Recurrent U-Net) [42] as it has the capacity to 

include residual and recurrent connections, which we believed 

would improve feature extraction and reconstruction. Although 

it possesses strong theoretical foundations, R2-U-Net did not 

meet expectations due to its inability to provide the necessary 

level of detail and accuracy for superior resolution. This led us 

to investigate additional architectural improvements to enhance 

the results. 

We also investigated incorporating attention gates [43] into 

both RU-Net and U-Net structures, aiming to direct the 

network's focus towards the most important parts of the images 

and enhance overall performance. Nevertheless, this method 

resulted in visible flaws in the final images, detracting from the 

overall visual appeal of the results. These artifacts could result 

from too much focus on specific attributes or instability during 

training caused by the attention mechanism. These experiments 

provided us with important knowledge that led us to incorporate 

residual blocks and pretraining strategies in our final model. 

The repeated cycle of testing, evaluating, and improving 

designs not only allowed us to find the best solution but also 

enhanced our understanding of the difficulties and trade-offs in 

super-resolution projects. This systematic approach emphasizes 

the thoroughness of our investigation and highlights the 

significance of considering a diverse array of options before 

settling on the best solution. 

VI.  CONCLUSION 

This study advances the image super-resolution field by 

proposing innovative enhancements to the SRGAN design. By 

incorporating U-Net-inspired architectures, residual 

connections, and pretraining strategies, we effectively 

addressed major challenges in super-resolution, such as 

artifacts and loss of fine details, all while improving training 

stability and convergence speed. Integrating residual blocks 

into the U-Net structure facilitated the extraction of advanced 

features and promoted smooth gradient flow, ultimately 

resulting in improved visual quality and structural coherence in 

the generated images. Additionally, initializing the RU-Net 

with an autoencoder led to faster convergence and reduced 

overfitting, especially when data is scarce. 

This work is significant because it helps fill gaps in current 

super-resolution techniques. While traditional SRGAN designs 

have been successful, the proposed model, pre-trained RU-

SRGAN, demonstrated superior results in both quantitative 

metrics (PSNR and SSIM) and visual quality. These 

advancements are particularly crucial for tasks involving low-

resolution images, such as data captured by UAVs, where 

accurate reconstructions are vital for activities like object 

detection, scene categorization, and remote sensing. Future 

research could focus on expanding these models to handle real-

time super-resolution tasks and investigating their applicability 

in various fields, including medical imaging and autonomous 

systems. 

While the pretrained RU-SRGAN model has demonstrated 

strong generalizability across UAV imagery and medical 

datasets, further validation on a wider range of datasets-such as 

low-light images, satellite imagery, and thermal imaging-could 

enhance its robustness for diverse real-world applications. 

Additionally, the model currently operates with a fixed 

upscaling factor (x4), which may not be optimal for all 

scenarios. Future research could explore adaptive super-

resolution mechanisms, where the model dynamically adjusts 

the upscaling factor based on input quality and application 

requirements, improving its flexibility for various practical 

deployments. 
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