[1] Pawar, A. Y., Sonawane, D. D., Erande, K. B., & Derle, D. V. (2013). THz technology and its applications. Drug Invention Today, 5(2), 157-163.
[2] Lu, W., Zhao, W., Ma, C., Yi, Z., Zeng, Q., Wu, P., ... & Jiang, P. (2024). A simulation work on a thermally tunable and highly sensitive THz smart window device with dual-band absorption and wide-ranging transmission based on VO2 phase-change material. Optics & Laser Technology, 178, 111210.
[3] Khani, S., Danaie, M., Rezaei, P., Shahzadi, A. (2020) Compact ultra-wide upper stopband microstrip dual-band BPF using tapered and octagonal loop resonators. Frequenz, 74(1-2), 61-71.
[4] Uddin, J. (Ed.). (2017). THz Spectroscopy: A Cutting Edge Technology. BoD–Books on Demand.
[5] Kiani, S., Rezaei, P., Fakhr, M. (2023) Investigation of microwave resonant sensors for use in detecting changes of noninvasive blood glucose concentration, John Wiley and Sons, 45, 1055-1064.
[6] Babu, K. V., & Sree, G. N. J. (2023). Design and circuit analysis approach of graphene-based compact metamaterial-absorber for THz range applications. Optical and Quantum Electronics, 55(9), 769.
[7] Chen, Z., Cai, P., Wen, Q., Chen, H., Tang, Y., Yi, Z., ... & Yi, Y. (2023). Graphene multi-frequency broadband and ultra-broadband THz absorber based on surface plasmon resonance. Electronics, 12(12), 2655.
[8] Ri, K. J., Kim, J. S., Kim, J. H., & Ri, C. H. (2023). Tunable triple-broadband THz metamaterial absorber using a single VO2 circular ring. Optics Communications, 542, 129573.
[9] Zheng, C., Li, J., Liu, L., Li, J., Yue, Z., Hao, X., ... & Yao, J. (2022). Optically tunable THz metasurface absorber. Annalen der Physik, 534(5), 2200007.
[10] Alipour, A.H., Khani, S., Ashoorirad, M., Baghbani, R. (2023). Trapped multimodal resonance in magnetic field enhancement and sensitive THz plasmon sensor for toxic materials accusation. IEEE Sensor Journal, 23(13), 14057-14066.
[11] Khatami, S. A., Rezaei, P., & Zamzam, P. (2022). Quad-band metal-dielectric-metal perfect absorber to selective sensing application. Optical and Quantum Electronics, 54(10), 638.
[12] Fakharian, M.M. (2024) Design of a terahertz metasurface absorber based on machine learning technique, Tabriz Journal of Electrical Engineering, 54(3), 291-299.
[13] Wang, J., Qin, X., Zhao, Q., Duan, G., & Wang, B. X. (2024, February). Five-band tunable THz metamaterial absorber using two sets of different-sized graphene-based copper-coin-like resonators. MDPI Photonics, vol. 11, no. 3, p. 225.
[14] Du, C., Zhou, D., Guo, H. H., Pang, Y. Q., Shi, H. Y., Liu, W. F., ... & Xu, Z. (2020). An ultra-broadband THz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Nanoscale, 12(17), 9769-9775.
[15] Khani, S., Hayati, M. (2021) An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices and Microstructures, 156, 106970
[16] Hadipour, S., Rezaei, P., & Norouzi-Razani, A. (2024). Multi-band square-shaped polarization-insensitive graphene-based perfect absorber. Optical and Quantum Electronics, 56(3), 471.
[17] Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene: an emerging electronic material. Advanced materials, 24(43), 5782-5825.
[18] Rhee, K.Y. (2020). Electronic and thermal properties of graphene. Nanomaterials, 10(5), 926.
[19] Khodadadi, B., Rezaei, P., Hadipour, S. (2025). Dual-band polarization-independent maze-shaped absorber based on graphene for terahertz biomedical sensing. Optics Express, 33(1), 545227.
[20] Khani, S., Hayati, M. (2022). Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer, Scientific Reports, 12(1), 5246.
[21] Song, Y., Deng, X. H., Zhang, P., Guo, F., & Qin, K. (2024). Graphene-Based Metamaterial Absorber with Perfect Multi-band Absorption. Journal of Electronic Materials, 1-10.
[22] Korani, N., Mohammadi, S., et al. (2024). A tunable graphene dual mode absorber for efficient THz radiation absorption and sensing applications. Diamond and Related Materials, 111554.
[23] Lai, R., Chen, H., Zhou, Z., Yi, Z., Tang, B., Chen, J., ... & Sun, T. (2023). Design of a penta-band graphene-based THz metamaterial absorber with fine sensing performance. Micromachines, 14(9), 1802.
[24] Zamzam, P., Rezaei, P., Khatami, S.A., & Appasani, B. (2025). Super perfect polarization-insensitive graphene disk terahertz absorber for breast cancer detection using deep learning. Optics & Laser Technology, 183, 112246.
[25] Khani, S., Hayati, M. (2022). Optical sensing in single-mode filters base on surface plasmon H-shaped cavities, Optics Communications, 505, 127534.
[26] Mohsen Daraei, O., Rezaei, P., Zamzam, P., et al. (2024). Single/multi-band graphene-based disk THz absorbers with single graphene layer: Conceptual design. Optical and Quantum Electronics, 56(11),1844.
[27] Rangasamy, S., Khansadurai, A. M., Venugopal, G., & Udayakumar, A. K. (2023). Graphene-based O-shaped metamaterial absorber design with broad response for solar energy absorption. Optical and Quantum Electronics, 55(1), 90.
[28] Zamzam, P., & Rezaei, P. (2022). Renovation of dual-band to quad-band polarization-insensitive and wide incident angle perfect absorber based on the extra graphene layer. Micro Nanostruct., 168, 207261.
[29] Alizadeh, S., Zareian-Jahromi, E., & Mashayekhi, V. (2022). A tunable graphene-based refractive index sensor for THz bio-sensing applications. Optical and Quantum Electronics, 54, 1-13.
[30] Patel, S. K., Solanki, N., Charola, S., Parmar, J., Zakaria, R., Faragallah, O. S., ... & Rashed, A. N. Z. (2022). Graphene-based highly sensitive refractive index sensor using double split ring resonator metasurface. Optical and Quantum Electronics, 54(3), 203.
[31] Nickpay, M. R., Danaie, M., & Shahzadi, A. (2022). Design of a graphene-based multi-band metamaterial perfect absorber in THz frequency region for refractive index sensing. Physica E: Low-dimensional Systems and Nanostructures, 138, 115114.
[32] Rezagholizadeh, E., Biabanifard, M., & Borzooei, S. (2020). Analytical design of tunable THz refractive index sensor for TE and TM modes using graphene disks. J. Physics D: Appl. Phys., 53(29), 295107.
[33] Jalalvand, A.R., Rashidi, Z., Khajenoori, M. (2023) Sensitive and selective simultaneous biosensing of nandrolone and testosterone as two anabolic steroids by a novel biosensor assisted by second-order calibration. Steroids, 189, 109138.
[34] Veeraselvam, A., Mohammed, G. N. A., Savarimuthu, K., Anguera, J., Paul, J. C., & Krishnan, R. K. (2021). Refractive index-based THz sensor using graphene for material characterization. Sensors, 21(23), 8151.
[35] Rastgordani, A., & Kashani, Z. G. (2020). High-sensitive refractive index sensors based on graphene ring metasurface. Optics Communications, 474, 126164.
[36] Li, C., & Wu, Q. (2024). Graphene-based tunable high-sensitivity metasurface refractive index sensor. Plasmonics, 1-12.
[37] Biabanifard, M., & Abrishamian, M. S. (2018). Circuit modeling of tunable THz graphene absorber. Optik, 158, 842-849.
[38] Biabanifard, M., & Abrishamian, M. S. (2018). Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU-Int. J. Electron. and Commun., 95, 256-263.
[39] Barzegar-Parizi, S., Rejaei, B., & Khavasi, A. (2015). Analytical circuit model for periodic arrays of graphene disks. IEEE Journal of Quantum Electronics, 51(9), 1-7.
[40] Ferrari, A.C., Basko, D.M. (2013). Raman spectroscopy is a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235-246.
[41] Novoselov, K.S., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306, 5696, 666-669.
[42] Smith, D. R., Pendry, J.B. (2006). Homogenization of metamaterials by field averaging. JOSA B 23(3), 391-403.
[43] Yan, D., et al. Graphene-assisted narrow bandwidth dual-band tunable terahertz metamaterial absorber. Frontiers in Physics 8 (2020): 306.
[44] V. Astley, K.S. Reichel, J. Jones, R. Mendis, D.M. Mittleman, THz multichannel microfluidic sensor based on parallel-plate waveguide resonance cavities, Appl. Phys. Lett. 100 (23) (2012), 231108.
[45] C.Y. Chen, Y.H. Yang, T.J. Yen, Unveiling the electromagnetic responses of fourfold symmetric metamaterials and their THz sensing capability, Appl. Phys. Express. 6 (2) (2013), 022002.
[46] B. You, J.Y. Lu, T.A. Liu, J.L. Peng, Hybrid THz plasmonic waveguide for sensing applications, Opt. Express 21 (18) (2013) 21087–21096.
[47] L. Cong, R. Singh, Sensing with THz metamaterial absorbers, arXiv preprint arXiv: (2014) 1408.3711.
[48] F. Fan, et al., THz refractive index sensing based on photonic column array, IEEE Photon. Technol. Lett. 27 (5) (2014) 478–481.
[49] Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A.K. Azad, A graphene-based tunable THz sensor with double Fano resonances, Nanoscale 7 (29) (2015) 12682–12688.
[50] B.X. Wang, G.Z. Wang, T. Sang, Simple design of novel triple-band THz metamaterial absorber for sensing application, J. Phys. Appl. Phys. 49 (16) (2016),165307.
[51] A. Soltani, H. Neshasteh, A. Mataji-Kojouri, N. Born, E. CastroCamus, M. Shahabadi, M. Koch, Highly sensitive THz dielectric sensor for smallvolume liquid samples, Appl. Phys. Lett. 108 (19) (2016), 191105.
[52] X. Hu, et al., Metamaterial absorber integrated microfluidic THz sensors, Laser Photon. Rev. 10 (6) (2016) 962–969.
[53] X. Chen, W. Fan, Ultrasensitive THz metamaterial sensor based on spoof surface plasmon, Sci. Rep. 7 (2017) 2092.
[54] Y. Xin, L. Lan-Ju, D. Xin, Y. Jian-Quan, Solid analyte and aqueous solutions sensing based on a flexible THz dual-band metamaterial absorber, Opt. Eng. 56 (2) (2017) 1–6.
[55] W. Zhang et al., Ultrasensitive dual-band THz sensing with metamaterial perfect absorber, IEEE MTT-S Int. Microw. Workshop Adv. Mater. Process. for RF THz Appl. 17488695 (2017) 1-3.
[56] W. Wang, et al., Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing, J. Phys. D: Appl. Phys. 50 (13) (2017), 135108.
[57] P.R. Tang, J. Li, L.H. Du, Q. Liu, Q.X. Peng, J.H. Zhao, B. Zhu, Z.R. Li, L.G. Zhu, Ultrasensitive specific THz sensor based on tunable plasmon-induced transparency of a graphene micro-ribbon array structure, Opt. Express 26 (23) (2018) 30655–30666.
[58] Q. Xie, G.X. Dong, B.X. Wang, et al., High-Q fano resonance in THz frequency based on an asymmetric metamaterial resonator, Nanoscale Res. Lett. 13 (294) (2018).
[59] M. Janneh, A. De Marcellis, E. Palange, A.T. Tenggara, D. Byun, Design of a metasurface-based dual-band THz perfect absorber with very high Q-factors for sensing applications, Opt. Commun. 416 (2018) 152–159.
[60] S. Niknam, M. Yazdi, S. Behboudi Amlashi, Enhanced ultra-sensitive metamaterial resonance sensor based on double corrugated metal stripe for THz sensing, Sci. Rep. 9 (2019) 7516.
[61] F. Lan, F. Luo, P. Mazumder, Z. Yang, L. Meng, Z. Bao, J. Zhou, Y. Zhang, S. Liang, Z. Shi, A. Rauf Khan, Z. Zhang, L. Wang, J. Yin, H. Zeng, Dual-band refractometric THz biosensing with intense wave-matter-overlap microfluidic channel, Biomed. Opt. Express 10 (8) (2019) 3789–3799.
[62] Z. Vafapour, W. Troy, A. Rashidi, Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber, IEEE Sens. J. 21 (17) (2021) 19307–19313.
[63] A. Keshavarz, Z. Vafapour, Sensing avian influenza viruses using THz metamaterial reflector, IEEE Sens. J. 19 (13) (2019) 5161–5166.
[64] S. Hu, D. Liu, H. Yang, H. Wang, Y. Wang, Staggered H-shaped metamaterial based on electromagnetically induced transparency effect and its refractive index sensing performance, Opt. Commun. 450 (2019) 202–207.
[65] F.G. Vanani, A. Fardoost, R. Safian, Design of double ring labelfree THz sensor, IEEE Sens. J. 19 (4) (2019) 1293–1298.
[66] L.S. Li, F. Hu, Z. Chen, W. Zhang, J. Han, Metamaterial THz sensor for measuring thermal-induced denaturation temperature of insulin, IEEE Sensor J. 20 (4) (2019) 1821–1828.
[67] A.S. Saadeldin, et al., Highly sensitive THz metamaterial sensor, IEEE Sens. J.19 (18) (2019) 7993–7999.
[68] Y.K. Srivastava, et al., THz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces, Appl. Phys. Lett. 115 (15) (2019), 151105.
[69] E. Rezagholizadeh, M. Biabanifard, S. Borzooei, Analytical design of tunable THz refractive index sensor for TE and TM modes using graphene disks, J. Phys. Appl. Phys. 53 (2020), 295107.
[70] Y. Wang, D. Zhu, Z. Cui, L. Yue, X. Zhang, L. Hou, K. Zhang, H. Hu, Properties and sensing performance of all-dielectric metasurface THz absorbers, IEEE Trans.THz Sci. Tech. 10 (6) (2020) 599–605.
[71] T. Chen, D. Zhang, F. Huang, Z. Li, F. Hu, Design of a THz metamaterial sensor based on split ring resonator nested square ring resonator, Mater. Res. Express 7 (9) (2020), 095802.
[72] X. Du, F. Yan, W. Wang, L. Zhang, Z. Bai, H. Zhou, Y. Hou, Thermally-stable graphene metamaterial absorber with excellent tunability for high-performance refractive index sensing in the THz band, Opt. Las. Tech. 144 (2021), 107409.
[73] M.Y. Azab, M.F.O. Hameed, A.M. Nasr, S.S.A. Obayya, Highly sensitive metamaterial biosensor for cancer early detection, IEEE Sens. J. 21 (6) (2021)7748–7755.
[74] Zamzam, P., Rezaei, P., Abdulkarim, Y. I., & Daraei, O. M. (2023). Graphene-based polarization-insensitive metamaterials with perfect absorption for THz biosensing applications: Analytical approach. Optics & Laser Technology, 163, 109444.
[75] Barzegar-Parizi, S. (2023). Refractive index sensor with dual sensing bands based on an array of Jerusalem cross cavities to detect the hemoglobin concentrations. Opt. Quantum Electron., 55(1), 46.
[76] Khatami, S. A., Rezaei, P., & Danaie, M. (2024). High accuracy graphene-based refractive index sensor: Analytical approach. Diamond and Related Materials, 146, 111225.