Improving the Performance of the RI Sensor Based on a Disk-shaped Graphene Absorber using Pyramidal Air Holes in the Dielectric Layer

Document Type : Research Paper

Authors

Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.

Abstract

This manuscript introduces a highly sensitive refractive index sensor that utilizes a disk-shaped graphene absorber. This design takes advantage of graphene's exceptional properties and integrates pyramid-shaped air holes within the dielectric layer. The sensor operates in the terahertz (THz), with a specific focus on improving sensitivity and overall performance. Graphene's high electrical conductivity and tunable properties make it an ideal material for THz absorption, enabling precise detection of refractive index changes the proposed structure comprises a graphene pattern on the top layer, a SiO2 as dielectric in the middle layer, and a gold reflective in the bottom layer. Through full-wave simulation and transmission line modeling, the sensor's performance is validated, showing a remarkable rate of absorption of 99.99% at 4.26 THz. Further enhancement is achieved by introducing pyramidal air holes in the dielectric layer, significantly improving the sensor's quality factor and sensitivity. The quality factor of the sensor is improved from 14 to 23 by adding pyramidal air holes in the substrate layer. The structure was full-wave simulated using software CST with the FDTD solution method, and the transmission line method was done with the Matlab software. The results suggest that the planned sensor serves as a highly suitable candidate for early disease detection, including cancer and influenza, with potential applications in the medical industry.

Keywords

Main Subjects


[1] Pawar, A. Y., Sonawane, D. D., Erande, K. B., & Derle, D. V. (2013). THz technology and its applications. Drug Invention Today5(2), 157-163.
[2] Lu, W., Zhao, W., Ma, C., Yi, Z., Zeng, Q., Wu, P., ... & Jiang, P. (2024). A simulation work on a thermally tunable and highly sensitive THz smart window device with dual-band absorption and wide-ranging transmission based on VO2 phase-change material. Optics & Laser Technology178, 111210.
[3] Khani, S., Danaie, M., Rezaei, P., Shahzadi, A. (2020) Compact ultra-wide upper stopband microstrip dual-band BPF using tapered and octagonal loop resonators. Frequenz, 74(1-2), 61-71.
[4] Uddin, J. (Ed.). (2017). THz Spectroscopy: A Cutting Edge Technology. BoD–Books on Demand.
[5] Kiani, S., Rezaei, P., Fakhr, M. (2023) Investigation of microwave resonant sensors for use in detecting changes of noninvasive blood glucose concentration, John Wiley and Sons, 45, 1055-1064.
[6] Babu, K. V., & Sree, G. N. J. (2023). Design and circuit analysis approach of graphene-based compact metamaterial-absorber for THz range applications. Optical and Quantum Electronics55(9), 769.
[7] Chen, Z., Cai, P., Wen, Q., Chen, H., Tang, Y., Yi, Z., ... & Yi, Y. (2023). Graphene multi-frequency broadband and ultra-broadband THz absorber based on surface plasmon resonance. Electronics12(12), 2655.
[8] Ri, K. J., Kim, J. S., Kim, J. H., & Ri, C. H. (2023). Tunable triple-broadband THz metamaterial absorber using a single VO2 circular ring. Optics Communications542, 129573.
[9] Zheng, C., Li, J., Liu, L., Li, J., Yue, Z., Hao, X., ... & Yao, J. (2022). Optically tunable THz metasurface absorber. Annalen der Physik534(5), 2200007.
[10] Alipour, A.H., Khani, S., Ashoorirad, M., Baghbani, R. (2023). Trapped multimodal resonance in magnetic field enhancement and sensitive THz plasmon sensor for toxic materials accusation. IEEE Sensor Journal, 23(13), 14057-14066.
[11] Khatami, S. A., Rezaei, P., & Zamzam, P. (2022). Quad-band metal-dielectric-metal perfect absorber to selective sensing application. Optical and Quantum Electronics54(10), 638.
[12] Fakharian, M.M. (2024) Design of a terahertz metasurface absorber based on machine learning technique, Tabriz Journal of Electrical Engineering, 54(3), 291-299.
[13] Wang, J., Qin, X., Zhao, Q., Duan, G., & Wang, B. X. (2024, February). Five-band tunable THz metamaterial absorber using two sets of different-sized graphene-based copper-coin-like resonators. MDPI Photonics, vol. 11, no. 3, p. 225.
[14] Du, C., Zhou, D., Guo, H. H., Pang, Y. Q., Shi, H. Y., Liu, W. F., ... & Xu, Z. (2020). An ultra-broadband THz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Nanoscale12(17), 9769-9775.
[15] Khani, S., Hayati, M. (2021) An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices and Microstructures, 156, 106970
[16] Hadipour, S., Rezaei, P., & Norouzi-Razani, A. (2024). Multi-band square-shaped polarization-insensitive graphene-based perfect absorber. Optical and Quantum Electronics56(3), 471.
[17] Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene: an emerging electronic material. Advanced materials24(43), 5782-5825.
[18] Rhee, K.Y. (2020). Electronic and thermal properties of graphene. Nanomaterials10(5), 926.
[19] Khodadadi, B., Rezaei, P., Hadipour, S. (2025). Dual-band polarization-independent maze-shaped absorber based on graphene for terahertz biomedical sensing. Optics Express, 33(1), 545227.
[20] Khani, S., Hayati, M. (2022). Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer, Scientific Reports, 12(1), 5246.
[21] Song, Y., Deng, X. H., Zhang, P., Guo, F., & Qin, K. (2024). Graphene-Based Metamaterial Absorber with Perfect Multi-band Absorption. Journal of Electronic Materials, 1-10.
[22] Korani, N., Mohammadi, S., et al. (2024). A tunable graphene dual mode absorber for efficient THz radiation absorption and sensing applications. Diamond and Related Materials, 111554.
[23] Lai, R., Chen, H., Zhou, Z., Yi, Z., Tang, B., Chen, J., ... & Sun, T. (2023). Design of a penta-band graphene-based THz metamaterial absorber with fine sensing performance. Micromachines14(9), 1802.
[24] Zamzam, P., Rezaei, P., Khatami, S.A., & Appasani, B. (2025). Super perfect polarization-insensitive graphene disk terahertz absorber for breast cancer detection using deep learning. Optics & Laser Technology, 183, 112246.
[25] Khani, S., Hayati, M. (2022). Optical sensing in single-mode filters base on surface plasmon H-shaped cavities, Optics Communications, 505, 127534.
[26] Mohsen Daraei, O., Rezaei, P., Zamzam, P., et al. (2024). Single/multi-band graphene-based disk THz absorbers with single graphene layer: Conceptual design. Optical and Quantum Electronics, 56(11),1844.
[27] Rangasamy, S., Khansadurai, A. M., Venugopal, G., & Udayakumar, A. K. (2023). Graphene-based O-shaped metamaterial absorber design with broad response for solar energy absorption. Optical and Quantum Electronics55(1), 90.
[28] Zamzam, P., & Rezaei, P. (2022). Renovation of dual-band to quad-band polarization-insensitive and wide incident angle perfect absorber based on the extra graphene layer. Micro Nanostruct.168, 207261.
[29] Alizadeh, S., Zareian-Jahromi, E., & Mashayekhi, V. (2022). A tunable graphene-based refractive index sensor for THz bio-sensing applications. Optical and Quantum Electronics54, 1-13.
[30] Patel, S. K., Solanki, N., Charola, S., Parmar, J., Zakaria, R., Faragallah, O. S., ... & Rashed, A. N. Z. (2022). Graphene-based highly sensitive refractive index sensor using double split ring resonator metasurface. Optical and Quantum Electronics54(3), 203.
[31] Nickpay, M. R., Danaie, M., & Shahzadi, A. (2022). Design of a graphene-based multi-band metamaterial perfect absorber in THz frequency region for refractive index sensing. Physica E: Low-dimensional Systems and Nanostructures138, 115114.
[32] Rezagholizadeh, E., Biabanifard, M., & Borzooei, S. (2020). Analytical design of tunable THz refractive index sensor for TE and TM modes using graphene disks. J. Physics D: Appl. Phys.53(29), 295107.
[33] Jalalvand, A.R., Rashidi, Z., Khajenoori, M. (2023) Sensitive and selective simultaneous biosensing of nandrolone and testosterone as two anabolic steroids by a novel biosensor assisted by second-order calibration. Steroids, 189, 109138.
[34] Veeraselvam, A., Mohammed, G. N. A., Savarimuthu, K., Anguera, J., Paul, J. C., & Krishnan, R. K. (2021). Refractive index-based THz sensor using graphene for material characterization. Sensors21(23), 8151.
[35] Rastgordani, A., & Kashani, Z. G. (2020). High-sensitive refractive index sensors based on graphene ring metasurface. Optics Communications474, 126164.
[36] Li, C., & Wu, Q. (2024). Graphene-based tunable high-sensitivity metasurface refractive index sensor. Plasmonics, 1-12.
[37] Biabanifard, M., & Abrishamian, M. S. (2018). Circuit modeling of tunable THz graphene absorber. Optik, 158, 842-849.
[38] Biabanifard, M., & Abrishamian, M. S. (2018). Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU-Int. J. Electron. and Commun.95, 256-263.
[39] Barzegar-Parizi, S., Rejaei, B., & Khavasi, A. (2015). Analytical circuit model for periodic arrays of graphene disks. IEEE Journal of Quantum Electronics51(9), 1-7.
[40] Ferrari, A.C., Basko, D.M. (2013). Raman spectroscopy is a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235-246.
[41] Novoselov, K.S., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306, 5696, 666-669.
[42] Smith, D. R., Pendry, J.B. (2006). Homogenization of metamaterials by field averaging. JOSA B 23(3), 391-403.
[43] Yan, D., et al. Graphene-assisted narrow bandwidth dual-band tunable terahertz metamaterial absorber. Frontiers in Physics 8 (2020): 306.
[44] V. Astley, K.S. Reichel, J. Jones, R. Mendis, D.M. Mittleman, THz multichannel microfluidic sensor based on parallel-plate waveguide resonance cavities, Appl. Phys. Lett. 100 (23) (2012), 231108.
[45] C.Y. Chen, Y.H. Yang, T.J. Yen, Unveiling the electromagnetic responses of fourfold symmetric metamaterials and their THz sensing capability, Appl. Phys. Express. 6 (2) (2013), 022002.
[46] B. You, J.Y. Lu, T.A. Liu, J.L. Peng, Hybrid THz plasmonic waveguide for sensing applications, Opt. Express 21 (18) (2013) 21087–21096.
[47] L. Cong, R. Singh, Sensing with THz metamaterial absorbers, arXiv preprint arXiv: (2014) 1408.3711.
[48] F. Fan, et al., THz refractive index sensing based on photonic column array, IEEE Photon. Technol. Lett. 27 (5) (2014) 478–481.
[49] Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A.K. Azad, A graphene-based tunable THz sensor with double Fano resonances, Nanoscale 7 (29) (2015) 12682–12688.
[50] B.X. Wang, G.Z. Wang, T. Sang, Simple design of novel triple-band THz metamaterial absorber for sensing application, J. Phys. Appl. Phys. 49 (16) (2016),165307.
[51] A. Soltani, H. Neshasteh, A. Mataji-Kojouri, N. Born, E. CastroCamus, M. Shahabadi, M. Koch, Highly sensitive THz dielectric sensor for smallvolume liquid samples, Appl. Phys. Lett. 108 (19) (2016), 191105.
[52] X. Hu, et al., Metamaterial absorber integrated microfluidic THz sensors, Laser Photon. Rev. 10 (6) (2016) 962–969.
[53] X. Chen, W. Fan, Ultrasensitive THz metamaterial sensor based on spoof surface plasmon, Sci. Rep. 7 (2017) 2092.
[54] Y. Xin, L. Lan-Ju, D. Xin, Y. Jian-Quan, Solid analyte and aqueous solutions sensing based on a flexible THz dual-band metamaterial absorber, Opt. Eng. 56 (2) (2017) 1–6.
[55] W. Zhang et al., Ultrasensitive dual-band THz sensing with metamaterial perfect absorber, IEEE MTT-S Int. Microw. Workshop Adv. Mater. Process. for RF THz Appl. 17488695 (2017) 1-3.
[56] W. Wang, et al., Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing, J. Phys. D: Appl. Phys. 50 (13) (2017), 135108.
[57] P.R. Tang, J. Li, L.H. Du, Q. Liu, Q.X. Peng, J.H. Zhao, B. Zhu, Z.R. Li, L.G. Zhu, Ultrasensitive specific THz sensor based on tunable plasmon-induced transparency of a graphene micro-ribbon array structure, Opt. Express 26 (23) (2018) 30655–30666.
[58] Q. Xie, G.X. Dong, B.X. Wang, et al., High-Q fano resonance in THz frequency based on an asymmetric metamaterial resonator, Nanoscale Res. Lett. 13 (294) (2018).
[59] M. Janneh, A. De Marcellis, E. Palange, A.T. Tenggara, D. Byun, Design of a metasurface-based dual-band THz perfect absorber with very high Q-factors for sensing applications, Opt. Commun. 416 (2018) 152–159.
[60] S. Niknam, M. Yazdi, S. Behboudi Amlashi, Enhanced ultra-sensitive metamaterial resonance sensor based on double corrugated metal stripe for THz sensing, Sci. Rep. 9 (2019) 7516.
[61] F. Lan, F. Luo, P. Mazumder, Z. Yang, L. Meng, Z. Bao, J. Zhou, Y. Zhang, S. Liang, Z. Shi, A. Rauf Khan, Z. Zhang, L. Wang, J. Yin, H. Zeng, Dual-band refractometric THz biosensing with intense wave-matter-overlap microfluidic channel, Biomed. Opt. Express 10 (8) (2019) 3789–3799.
[62] Z. Vafapour, W. Troy, A. Rashidi, Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber, IEEE Sens. J. 21 (17) (2021) 19307–19313.
[63] A. Keshavarz, Z. Vafapour, Sensing avian influenza viruses using THz metamaterial reflector, IEEE Sens. J. 19 (13) (2019) 5161–5166.
[64] S. Hu, D. Liu, H. Yang, H. Wang, Y. Wang, Staggered H-shaped metamaterial based on electromagnetically induced transparency effect and its refractive index sensing performance, Opt. Commun. 450 (2019) 202–207.
[65] F.G. Vanani, A. Fardoost, R. Safian, Design of double ring labelfree THz sensor, IEEE Sens. J. 19 (4) (2019) 1293–1298.
[66] L.S. Li, F. Hu, Z. Chen, W. Zhang, J. Han, Metamaterial THz sensor for measuring thermal-induced denaturation temperature of insulin, IEEE Sensor J. 20 (4) (2019) 1821–1828.
[67] A.S. Saadeldin, et al., Highly sensitive THz metamaterial sensor, IEEE Sens. J.19 (18) (2019) 7993–7999.
[68] Y.K. Srivastava, et al., THz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces, Appl. Phys. Lett. 115 (15) (2019), 151105.
[69] E. Rezagholizadeh, M. Biabanifard, S. Borzooei, Analytical design of tunable THz refractive index sensor for TE and TM modes using graphene disks, J. Phys. Appl. Phys. 53 (2020), 295107.
[70] Y. Wang, D. Zhu, Z. Cui, L. Yue, X. Zhang, L. Hou, K. Zhang, H. Hu, Properties and sensing performance of all-dielectric metasurface THz absorbers, IEEE Trans.THz Sci. Tech. 10 (6) (2020) 599–605.
[71] T. Chen, D. Zhang, F. Huang, Z. Li, F. Hu, Design of a THz metamaterial sensor based on split ring resonator nested square ring resonator, Mater. Res. Express 7 (9) (2020), 095802.
[72] X. Du, F. Yan, W. Wang, L. Zhang, Z. Bai, H. Zhou, Y. Hou, Thermally-stable graphene metamaterial absorber with excellent tunability for high-performance refractive index sensing in the THz band, Opt. Las. Tech. 144 (2021), 107409.
[73] M.Y. Azab, M.F.O. Hameed, A.M. Nasr, S.S.A. Obayya, Highly sensitive metamaterial biosensor for cancer early detection, IEEE Sens. J. 21 (6) (2021)7748–7755.
[74] Zamzam, P., Rezaei, P., Abdulkarim, Y. I., & Daraei, O. M. (2023). Graphene-based polarization-insensitive metamaterials with perfect absorption for THz biosensing applications: Analytical approach. Optics & Laser Technology163, 109444.
[75] Barzegar-Parizi, S. (2023). Refractive index sensor with dual sensing bands based on an array of Jerusalem cross cavities to detect the hemoglobin concentrations. Opt. Quantum Electron.55(1), 46.
[76] Khatami, S. A., Rezaei, P., & Danaie, M. (2024). High accuracy graphene-based refractive index sensor: Analytical approach. Diamond and Related Materials146, 111225.