Analyzing the Effect of using Electromagnetic Metamaterials in the Production of Plane Spiral Orbital Angular Momentum Waves (PSOAM)

Document Type : Research Paper

Authors

1 Satellite Communication Group, Faculty of Communications Technology, ICT Research Institute, Tehran, Iran.

2 Imam Hossein University, Tehran, Iran.

Abstract

The utilization of orbital angular momentum (OAM) presents an effective approach that enables the simultaneous use of multiple channels on a single frequency. Compared with conventional OAM carrier waves—whose three-dimensional radiation pattern resembles a cone with a hollow region at its center—the planar-spiral orbital angular momentum (PSOAM) carrier propagates transversely, making it more suitable for various practical applications. For the first time, the generation of PSOAM waves using a uniform circular array of microstrip antennas based on electromagnetic metamaterials has resulted in a phase pattern distinct from the conventional OAM theory. This study demonstrates that incorporating metamaterials into the antenna array structure facilitates the generation of higher-order OAM modes with fewer elements than conventional antennas. Simulation results indicate that the proposed array achieves approximately a 27% reduction in the number of antenna elements. Furthermore, the introduced antenna exhibits a wide relative bandwidth of 1.93.

Keywords

Main Subjects


[1] J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond. A, vol. 82, no. 557, pp. 560–567, 1909. DOI: https://doi.org/10.1098/rspa.1909.0060.
[2] R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev., vol. 50, no. 2, pp. 115–125, 1936. DOI: https://doi.org/10.1103/PhysRev.50.115.
[3] L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.” Phys. Rev. A, vol. 45, no. 11, pp. 8185–8189, 1992. DOI: 10.1103/PhysRevA.45.8185
[4] G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate,” Opt. Commun., vol. 127, no. 4, pp. 183–188, 1996. DOI: 10.1016/0030-4018(96)00070-3.
[5] Q. Bai, A. Tennant, and B. Allen, “Experimental circular phased array for generating OAM radio beams,” Electon. Lett., vol. 50, no. 20, pp. 1414–1415, 2014. DOI: 10.1049/el.2014.2860.
[6] Y. Cheng, X. Zhou, X. Xu, Y. Qin, and H. Wang, ‘‘Radar coincidence imaging with stochastic frequency modulated array,’’ IEEE J. Sel. Topics Signal Process., vol. 11, no. 2, pp. 414–427, Mar. 2017. DOI: 10.1109/JSTSP.2016.2615275.
[7] K. Liu, Y. Cheng, X. Li, and Y. Gao, ‘‘Microwave-sensing technology using orbital angular momentum: Overview of its advantages,’’ IEEE Veh. Technol. Mag., vol. 14, no. 2, pp. 112–118, Jun. 2019. DOI: 10.1109/MVT.2018.2890673.
[8] T. Yuan, H. Wang, Y. Qin, and Y. Cheng, ‘‘Electromagnetic vortex imaging using uniform concentric circular arrays,’’ IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1024–1027, 2016. DOI: 10.1109/LAWP.2015.2490169.
[9] M. Zhao, X. Gao, M. Xie, W. Zhai, W. Xu, S. Huang, and W. Gu, ‘‘Measurement of the rotational Doppler frequency shift of a spinning object using a radio frequency orbital angular momentum beam,’’ Opt. Lett., vol. 41, no. 11, p. 2549, May 2016. DOI: 10.1364/OL.41.002549.
[10] A. Vaziri, G. Weihs, and A. Zeilinger, ‘‘Superpositions of the orbital angular momentum for applications in quantum experiments,’’ J. Opt. B, Quantum Semiclass. Opt., vol. 4, no. 2, pp. S47–S51, Mar. 2002. DOI: 10.1088/1464-4266/4/2/367.
[11] L. Xiaoyu, Z. Yongzhong, and P. Guohao, "A Microstrip Yagi Antenna Array Generating Plane Spiral Orbital Angular Momentum Wave," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, pp. 1-3, 2020. DOI: 10.1109/ICMMT49418.2020.9386564.
[12] Z. Zhang, S. Zheng, X. Jin, H. Chi, and X. Zhang, "Generation of Plane Spiral OAM Waves Using Traveling-Wave Circular Slot Antenna," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 8-11, 2015. DOI: 10.1109/LAWP.2016.2552227.
[13] X. Y. Liu, Y. Zhu, W. Xie, G. H. Peng, and W. Wang, "Generation of Plane Spiral Orbital Angular Momentum Waves by Microstrip Yagi Antenna Array," in IEEE Access, vol. 8, pp. 175688-175696, 2020. DOI: 10.1109/ACCESS.2020.3026241.
[14] Hasan Onder Yılmaz, Fatih Yaman "Meta-material Antenna Designs for a 5.8 GHz Doppler Radar," in IEEE Transactions on Instrumentation and Measurement, vol. 69, pp. 1775-1782, 2020. DOI:10.1109/TIM.2019.2914131.
[15] Amir Habibi Daronkola, Farzad Tavakol Hamedani, Pejman Rezaei, “Design and Implementation of a New Method for Producing Transverse OAM with Metamaterial Antenna Structure”, Arabian Journal for Science and Engineering, 50:5853–5868, 2024, DOI: 10.1007/s13369-024-09659-2
[16] M. Danaeian, H. Ghayoumizadeh, "A Compact Narrow Band-Pass Filter Based on Composite Right-Left Handed Structures for WLAN Application," Journal of Applied Electromagnetics, Vol. 7, No.1, 2019.
[17] S. Zheng, Z. Zhang, Y. Pan, X. Jin, H. Chi, and X. Zhang, "Plane spiral orbital angular momentum electromagnetic wave," 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015, pp. 1-3, doi: 10.1109/APMC.2015.7413418.
[18]  Yongzhong Zhu, Weiguo Dang, Xiaoyu Liu, Yijun Chen, Xiaofei Zhou & Hongyan Lu "Generation of plane spiral orbital angular momentum using circular double‑slot Vivaldi antenna array," Scientific Reports, vol. 10, no. 1, p.18328, 2020. DOI: 10.1038/s41598-020-75202-6.
[19] Q. Ma, S. Zheng, J. Zheng, Y. Chen and X. Zhang, "Realization of Structured Electromagnetic Waves Based on Plane Spiral Orbital Angular Momentum Waves Using Circular Cylindrical Conformal Microstrip Antenna Array," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, pp. 91-93, 2018. DOI: 10.23919/APMC.2018.8617400.