[1] P. K. Menon and E. J. Ohlmeyer, “Integrated design of agile missile guidance and autopilot systems,” Control Eng. Pract., vol. 9, no. 10, pp. 1095–1106, 2001, doi: https://doi.org/10.1016/S0967-0661(01)00082-X.
[2] M. Ebrahimi and S. Nasrollahi, “Fractional Guidance Law with Impact Angle Constraint and Seeker’s Look Angle Limits,” Unmanned Syst., vol. 13, no. 01, pp. 261–277, Jan. 2025, doi: 10.1142/S2301385025500189.
[3] D. WILLIAMS, J. RICHMAN, and B. FRIEDLAND, “Design of an integrated strapdown guidance and control system for a tactical missile,” in Guidance and Control Conference, Reston, Virigina: American Institute of Aeronautics and Astronautics, Aug. 1983, p. 2169. doi: 10.2514/6.1983-2169.
[4] S. Shamaghdari, S. K. Y. Nikravesh, and M. Haeri, “Integrated guidance and control of elastic flight vehicle based on robust MPC,” Int. J. Robust Nonlinear Control, vol. 25, no. 15, pp. 2608–2630, Oct. 2015, doi: 10.1002/rnc.3215.
[5] X. Hu, H. R. Karimi, L. Wu, and Y. Guo, “Model predictive control‐based non‐linear fault tolerant control for air‐breathing hypersonic vehicles,” IET Control Theory Appl., vol. 8, no. 13, pp. 1147–1153, Sep. 2014, doi: 10.1049/iet-cta.2013.0986.
[6] P. K. Menon, G. D. Sweriduk, E. J. Ohlmeyer, and D. S. Malyevac, “Integrated Guidance and Control of Moving-Mass Actuated Kinetic Warheads,” J. Guid. Control. Dyn., vol. 27, no. 1, pp. 118–126, Jan. 2004, doi: 10.2514/1.9336.
[7] F. Liao, K. Yang, and H. Ji, “Adaptive integrated guidance and control with actuator failures based on backstepping and input-to-state stability,” in 2014 IEEE Chinese Guidance, Navigation and Control Conference, CGNCC 2014, IEEE, Aug. 2015, pp. 49–54. doi: 10.1109/CGNCC.2014.7007218.
[8] A. Ashrafifar and M. F. Jegarkandi, “Adaptive fin failures tolerant integrated guidance and control based on backstepping sliding mode,” Trans. Inst. Meas. Control, vol. 42, no. 10, pp. 1823–1833, Jun. 2020, doi: 10.1177/0142331219897430.
[9] S. Xingling and W. Honglun, “Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO,” ISA Trans., vol. 57, pp. 10–22, Jul. 2015, doi: 10.1016/j.isatra.2015.02.013.
[10] C. F. Lin, Q. Wang, J. L. Spayer, J. H. Evers, and J. R. Cloutier, “Integrated Estimation, Guidance, and Control System Design Using Game Theoretic Approach,” in 1992 American Control Conference, IEEE, Jun. 1992, pp. 3220–3224. doi: 10.23919/ACC.1992.4792744.
[11] M. Levy, T. Shima, and S. Gutman, “Full-state autopilot-guidance design under a linear quadratic differential game formulation,” Control Eng. Pract., vol. 75, no. 3, pp. 98–107, Jun. 2018, doi: 10.1016/j.conengprac.2018.03.009.
[12] T. Shima, M. Idan, and O. M. Golan, “Sliding-mode control for integrated missile autopilot guidance,” J. Guid. Control. Dyn., vol. 29, no. 2, pp. 250–260, Mar. 2006, doi: 10.2514/1.14951.
[13] Z. Guo, J. Guo, X. Wang, J. Chang, and H. Huang, “Sliding mode control for systems subjected to unmatched disturbances/unknown control direction and its application,” Int. J. Robust Nonlinear Control, vol. 31, no. 4, pp. 1303–1323, Mar. 2021, doi: 10.1002/rnc.5336.
[14] J. Guo, N. Lu, R. Jiang, and Z. Guo, “Novel Explicit Reference Governor-Based Adaptive Terminal Sliding Mode Control Design for Reentry Vehicles Equipped with Strapdown Seeker,” Int. J. Aeronaut. Sp. Sci., vol. 25, no. 1, pp. 200–212, Jan. 2024, doi: 10.1007/s42405-023-00647-8.
[15] T. Hughes and M. McFarland, “Integrated missile guidance law and autopilot design using linear optimal control,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, Reston, Virigina: American Institute of Aeronautics and Astronautics, Aug. 2000, p. 4163. doi: 10.2514/6.2000-4163.
[16] C.-F. Lin, J. Bibel, E. Ohlmeyer, and S. Malyevac, “Optimal design of integrated missile guidance and control,” in AIAA and SAE, 1998 World Aviation Conference, Reston, Virigina: American Institute of Aeronautics and Astronautics, Sep. 1998, p. 5519. doi: 10.2514/6.1998-5519.
[17] J. Yun and C.-K. Ryoo, “Integrated guidance and control law with impact angle constraint,” in 2011 11th International Conference on Control, Automation and Systems, IEEE, 2011, pp. 1239–1243.
[18] M. Levy, T. Shima, and S. Gutman, “Linear Quadratic Integrated Versus Separated Autopilot-Guidance Design,” J. Guid. Control. Dyn., vol. 36, no. 6, pp. 1722–1730, Nov. 2013, doi: 10.2514/1.61363.
[19] R. Sheikhbahaei and S. Khankalantary, “Three-dimensional continuous-time integrated guidance and control design using model predictive control,” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., vol. 237, no. 3, pp. 503–515, Mar. 2023, doi: 10.1177/09544100221103320.
[20] D. Bhattacharjee, S. Jaeger, and M. Hemati, “Integrated Guidance and Control of Quasi-Equilibrium Hypersonic Gliding Using Model Predictive Control,” in AIAA AVIATION FORUM AND ASCEND 2025, Reston, Virginia: American Institute of Aeronautics and Astronautics, Jul. 2025, p. 3550. doi: 10.2514/6.2025-3550.
[21] M. M. Soori and S. H. Sadati, “Online model predictive integrated control and guidance to intercept maneuvering targets,” AUT J. Mech. Eng., 2025, doi: 10.22060/ajme.2025.23808.6156.
[22] R. Chai, A. Savvaris, and S. Chai, “Integrated missile guidance and control using optimization-based predictive control,” Nonlinear Dyn., vol. 96, no. 2, pp. 997–1015, Apr. 2019, doi: 10.1007/s11071-019-04835-8.
[23] S. Lee, H. Lee, Y. Kim, J. Kim, and W. Choi, “GPU-Accelerated PD-IPM for Real-Time Model Predictive Control in Integrated Missile Guidance and Control Systems,” Sensors, vol. 22, no. 12, p. 4512, Jun. 2022, doi: 10.3390/s22124512.
[24] J. Guo, Y. Li, and J. Zhou, “An observer-based continuous adaptive sliding mode guidance against chattering for homing missiles,” Trans. Inst. Meas. Control, vol. 41, no. 12, pp. 3309–3320, 2019.
[25] N. Mate, B. Panchal, and S. E. Talole, “GESO based robust optimal guidance,” in 2015 International Conference on Industrial Instrumentation and Control (ICIC), IEEE, May 2015, pp. 187–192. doi: 10.1109/IIC.2015.7150735.
[26] B. Panchal, N. Mate, and S. E. Talole, “Continuous-time predictive control-based integrated guidance and control,” J. Guid. Control. Dyn., vol. 40, no. 7, pp. 1579–1595, 2017, doi: 10.2514/1.G002661.
[27] A. Zhurbal and M. Idan, “Effect of Estimation on the Performance of an Integrated Missile Guidance and Control System,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 4, pp. 2690–2708, 2011, doi: 10.1109/TAES.2011.6034659.
[28] A. Sinha, S. R. Kumar, and D. Mukherjee, “Impact time constrained integrated guidance and control design,” Aerosp. Sci. Technol., vol. 115, p. 106824, Aug. 2021, doi: 10.1016/j.ast.2021.106824.
[29] N. O. Ghahramani and F. Towhidkhah, “Constrained incremental predictive controller design for a flexible joint robot,” ISA Trans., vol. 48, no. 3, pp. 321–326, 2009, doi: 10.1016/j.isatra.2009.01.010.
[30] L. Wang, Model Predictive Control System Design and Implementation Using MATLAB®. London: Springer London, 2009. doi: 10.1007/978-1-84882-331-0.
[31] A. Koren, M. Idan, and O. M. Golan, “Integrated Sliding Mode Guidance and Control for Missile with On-Off Actuators,” J. Guid. Control. Dyn., vol. 31, no. 1, pp. 204–214, Jan. 2008, doi: 10.2514/1.31328.
[32] J. Park, Y. Kim, and J.-H. Kim, “Integrated Guidance and Control Using Model Predictive Control with Flight Path Angle Prediction against Pull-Up Maneuvering Target,” Sensors, vol. 20, no. 11, p. 3143, Jun. 2020, doi: 10.3390/s20113143.