[1] M. Asyaei, “Energy-Efficient Dynamic Circuit for High Fan-In OR Gates,” Modeling and Simulation in Electrical & Electronics Engineering (MSEEE) 7 (2019) 23–34. https://doi.org/10.1001/1.23223871
[2] N. Rahimzadeh, “Wideband Balun-LNA Employing gm-Boosting Feedback and Modified Current Bleeding Circuit,” Modeling and Simulation in Electrical & Electronics Engineering (MSEEE) 8 (2020) 45–56. https://doi.org/10.1001/1.23223871
[3] B. Rostami, F. Shanehsazzadeh, and M. Fardmanesh, “Fast Fourier transform based NDT approach for depth detection of hidden defects using HTS rf-SQUID,” IEEE Trans. Appl. Supercond. 28 (2018) 1–6. https://doi.org/10.1109/TASC.2018.2841927
[4] B.J. Hosticka, W. Brockherde, D. Hammerschmidt, and R. Kokozinski, “Low-voltage CMOS analog circuits,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 42 (1995) 864–872. https://doi.org/10.1109/81.477197
[5] S.P. Mohanty and E. Kougianos, “Biosensors: A tutorial review,” IEEE Potentials 25 (2006) 35–40. https://doi.org/10.1109/MP.2006.1649009
[6] S.M.A. Zanjani, M. Aalipour, and M. Parvizi, “Design of a low power temperature sensor based on sub-threshold performance of carbon nanotube transistors with an inaccuracy of 1.5ºC for the range of -30 to 125ºC,” J. Intell. Process. Electr. Technol. 13 (2022) 115–127. https://doi.org/10.1001.1.23223871.1401.13.50.7.8
[7] M. Barros, J. Guilherme, and N. Horta, “Analog circuits optimization based on evolutionary computation techniques,” Integration 43 (2010) 136–155.
[8] A. Jafarri, S. Sadri, and M. Zekri, “Design optimization of analog integrated circuits by using artificial neural networks,” in: Proc. Int. Conf. Soft Comput. Pattern Recognit. (SOCPAR) (2010) 385–388.
[9] K. Chau and C. Cheng, “Real-time prediction of water stage with artificial neural network approach,” Lect. Notes Artif. Intell. 2557 (2002) 715.
[10] O. Bouattane and B. Benhala, “GA and ACO techniques for the analog circuits design optimization,” J. Theor. Appl. Inf. Technol. 64 (2014) 413–419.
[11] B. Benhala, A. Ahaitouf, A. Mechaqrane, B. Benlahbib, F. Abdi, E.H. Abarkan, and M. Fakhfakh, “Sizing of current conveyors by means of an ant colony optimization technique,” in: Proc. IEEE Int. Conf. Multimedia Comput. Syst. (ICMCS), Ouarzazate, Morocco (2011) 1–6. https://doi.org/10.1109/ICMCS.2011.5945669
[12] E.M. Abdelkader, A. Al-Sakkaf, N. Elshaboury, and G. Alfalah, “Hybrid grey wolf optimization-based Gaussian process regression model for simulating deterioration behavior of highway tunnel components,” Processes 10 (2022) 36. https://doi.org/10.3390/pr10010036
[13] Y. Jiang, J. Ju, X. Zhang, and B. Yang, “Automated analog circuit design using Genetic Algorithms,” in: Proc. IEEE Int. Conf. ASIC Design (ICASID), Hong Kong (2009) 223–228. https://doi.org/10.1109/icasid.2009.5276912
[14] J.B. Grimbleby, “Automatic analogue circuit synthesis using genetic algorithms,” IEE Proc. Circuits Devices Syst. 147 (2001) 319–323. https://doi.org/10.1049/ip-cds:20000770
[15] B. Liu, F.V. Fernandez, and G.G.E. Gielen, “Efficient and accurate statistical analog yield optimization and variation-aware circuit sizing based on computational intelligence techniques,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30 (2011) 793–805. https://doi.org/10.1109/TCAD.2011.2106850
[16] H. Yuan and J. He, “Evolutionary design of operational amplifier using variable-length differential evolution algorithm,” in: Proc. IEEE Int. Conf. Circuits, Syst., Modeling Simulation (ICCASM), Taiyuan, China (2010) 610–614. https://doi.org/10.1109/icca-sm.2010.5620307
[17] R.A. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE Circuits Devices Mag. 5 (1989) 19–26. https://doi.org/10.1109/101.17235
[18] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated annealing,” Science 220 (1983) 671–680. https://doi.org/10.1126/science.220.4598.671
[19] N. Lourenço, E. Afacan, R. Martins, F. Passos, A. Canelas, R. Póvoa, N. Horta, and G. Dundar, “Using polynomial regression and artificial neural networks for reusable analog IC sizing,” in: Proc. IEEE Symp. Microelectron. Circuits Devices (SMACD), Lausanne, Switzerland (2019) 13–16. https://doi.org/10.1109/SMACD.2019.8795282
[20] L.Y. Tseng and S. Yang, “Genetic algorithms for clustering, feature selection and classification,” in: Proc. IEEE Int. Conf. Neural Netw. (1997) 1612–1616.
[21] J. Bala, J. Huary, H. Vafaie, K. De Jong, and H. Wechsler, “Hybrid learning using genetic algorithms and decision trees for pattern classification,” in: Proc. IJCAI Conf., Montreal, Canada, Aug. 1995.
[22] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in: Proc. IEEE Int. Conf. Neural Netw., Perth, Australia (1995) 1942–1948.
[23] J.-P. Hong and S.-G. Lee, “Low phase noise Gm-boosted differential gate-to-source feedback Colpitts CMOS VCO,”
IEEE J. Solid State Circ. 44 (2009) 3079–3091. [
https://doi.org/10.1109/jssc.2009.203
[24] C. Juang, Y. Chang, and J. Liu, “A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design,” IEEE Trans. Syst., Man, Cybern. 34 (2004) 997–1006.
[25] A. Thakker Rajesh, R. Ranjan, and P. Kumar, “Automatic Design of Low Power Low Voltage Analog Circuits Using Particle Swarm Optimization with Re-Initialization,” J. Low Power Electron. 5 (2009) 291–302.
[26] V.K. Devabhaktuni, M.C.E. Yagoub, Y. Fang, J. Xu, and Q.J. Zhang, “Neural networks for microwave modeling: Model development issues and nonlinear modeling techniques,” Int. J. RF Microw. Comput.-Aided Eng. 11 (2001) 4–21. https://doi.org/10.1002/1099-047X(200101)
[27] T. Dhaene, J. Ureel, N. Fache, and D.D. Zutter, “Adaptive frequency sampling algorithm for fast and accurate S-parameter modeling of general planar structures,” in: Proc. IEEE MTT-S Int. Microw. Symp., Orlando, FL, USA (1995) 1427–1430. https://doi.org/10.1109/MWSYM.1995.406240
[28] P.B.L. Meijer, “Fast and smooth highly nonlinear multidimensional table models for device modeling,” IEEE Trans. Circuits Syst. 37 (1990) 335–346. https://doi.org/10.1109/31.52727
[29] J. Mitchell and W. McDaniel, “Adaptive sampling technique,” IEEE Trans. Autom. Control 14 (1969) 200–201. https://doi.org/10.1109/TAC.1969.1099144
[30] U. Beyer and F. Śmieja, “Data exploration with reflective adaptive models,” Comput. Stat. Data Anal. 22 (1996) 193–211. https://doi.org/10.1016/0167-9473(95)00048-8
[31] V.K. Devabhaktuni and Q.J. Zhang, “Neural network training-driven adaptive sampling algorithm for microwave modeling,” in: Proc. Eur. Microw. Conf. (EUMA), Paris, France (2000) 1–4. https://doi.org/10.1109/EUMA.2000.338591
[32] W. Qu, S. Singh, Y. Lee, Y.S. Son, G.H. Cho, “Design-oriented analysis for miller compensation and its application to multistage amplifier design,” IEEE J. Solid-State Circuits 52 (2017) 517–527. https://doi.org/10.1109/JSSC.2016.2619677
[33] D. Marano, A.D. Grasso, G. Palumbo, S. Pennisi, “Optimized active single-miller capacitor compensation with inner half-feedforward stage for very high-load three-stage OTAs,” IEEE Trans. Circuits Syst. I: Regular Papers 63 (2016) 1349–1359. https://doi.org/10.1109/TCSI.2016.2573920
[34] S.K. Rajput, B.K. Hemant, “Two-stage high gain low power OpAmp with current buffer compensation,” in: Proc. IEEE/GHTCE, Shenzhen, China (2013) 121–124. https://doi.org/10.1109/GHTCE.2013.6-767255
[35] S.M.H. Largani, S. Shahsavari, S. Biabanifard, A. Jalali, "A new frequency compensation technique for three stages OTA by differential feedback path: SMC, frequency compensation, differential feedback path," Int. J. Numer. Model.: Electron. Netw., Devices Fields 28 (2015) 381–388. https://doi.org/10.1002/jnm.2013
[36] S.M. Anisheh and C. Dadkhah, “A two-stage method for optimizing the parameters of CMOS operational amplifiers based on evolutionary algorithm,” CSI J. Comput. Sci. Eng. 14 (2017) 1–10.
[37] B.P. De, K.B. Maji, R. Kar, D. Mandal, and S.P. Ghoshal, “Application of improved PSO for optimal design of CMOS two-stage Op-amp using nulling resistor compensation circuit,” in: Proc. IEEE Int. Conf. Devices Integr. Circuits (DEVIC), Kalyani, India (2017) 110–115. https://doi.org/10.1109/DEVIC.2017.8073917
[38] B.P. De, K.B. Maji, R. Kar, D. Mandal, and S.P. Ghoshal, “Design of optimal CMOS analog amplifier circuits using a hybrid evolutionary optimization technique,” J. Circuits Syst. Comput. 27 (2017) 1850029. https://doi.org/10.1142/S0218126618500299
[39] M.A.M. Majeed and P.S. Rao, “Optimal design of CMOS amplifier circuits using whale optimization algorithm,” Commun. Comput. Inf. Sci. (2018) 590–605. https://doi.org/10.1007/978-981-13-2372-0_53
[40] H. Gupta and B. Ghosh, “Analog circuits design using ant colony optimization,” Int. J. Electron. Commun. Comput. Technol. 2 (2012) 9–21.
[41] S. Asaithambi, M. Rajappa, and L. Ravi, “Optimization and control of CMOS analog integrated circuits for cyber-physical systems using hybrid grey wolf optimization algorithm,” J. Intell. Fuzzy Syst. 36 (2019) 4235–4245. https://doi.org/10.3233/jifs-169981
[42] A. Ahmadihaji and A. Nabavi, “Design of a 30 GHz rotary traveling wave oscillator with improved frequency tuning range in 0.18 μm CMOS technology,”
AEU – Int. J. Electron. Commun. 68 (2014) 1053–1057.
https://doi.org/10.1016/j.aeue.2014.05.008
[43] B. Jafari and S. Sheikhaei, “Low phase noise LC VCO with sinusoidal tail current shaping using cascode current source,” AEU – Int. J. Electron. Commun. 83 (2018) 114–122. https://doi.org/10.1016/j.aeue.2017.08.032
[44] I. Taha and M. Mirhassani, “A 24-GHz DCO with high amplitude stabilization and enhanced startup time for automotive radar,” IEEE Trans. Very Large Scale Integr. Syst. 27 (2019) 2260–2271. https://doi.org/10.1109/TVLSI.2019.2924018
[45] A. Karthigeyan, S. Radha, and E. Manikandan, “Single event transient mitigation techniques for a cross-coupled LC oscillator, including a single-event transient hardened CMOS LC-VCO circuit,”
IET Circuits, Devices Syst. 16 (2022) 178–188.
https://doi.org/10.1049/cds2.12094
[46] I. Ghorbel et al., “Design methodology of ultra-low-power LC-VCOs for IoT applications,” J. Circ. Syst. Comput. 28 (2019) 950122. https://doi.org/10.1142/S0218126619501226
[47] X. Sun et al., “A synthesizable constant tuning gain technique for wideband LC-VCO design,” IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 39 (2018) 14–24. https://doi.org/10.1109/TCAD.2018.2878161
[48] F.J. Del Pino Suárez and S.L. Khemchandani, “A new current-shaping technique based on a feedback injection mechanism to reduce VCO phase noise,” Sensors 21 (2021) 6583. https://doi.org/10.3390/s21196583