1.Zhang, Qing, et al. "Halide perovskite semiconductorlasers: materials, cavity design, and low threshold." NanoLetters 21.5 (2021): 1903-1914.
2.Jiao, Yuqing, et al. "InP membrane integrated photonicsresearch." Semiconductor Science and Technology 36.1(2020): 013001.
3.Takeda, Koji, et al. "Optical links on silicon photonicchips using ultralow-power consumption photonic-crystallasers." Optics Express 29.16 (2021): 26082-26092.
4.Tomiyasu, Takahiro, et al. "20-Gbit/s direct modulationof GaInAsP/InP membrane distributed-reflector laser withenergy cost of less than 100 fJ/bit." Applied PhysicsExpress 11.1 (2017): 012704.
5.Aihara, Takuma, et al. "Heterogeneously integratedwidely tunable laser using lattice filter and ring resonatoron Si photonics platform." Optics Express 30.10 (2022):15820-15829.
6.Wang, Ziye, et al. "Continuous-wave operation of 1550nm low-threshold triple-lattice photonic-crystal surface-emitting lasers." Light: Science & Applications 13.1(2024): 44.
7.Lee, Tae-Yun, Hansol Lee, and Heonsu Jeon."Colloidal-quantum-dot nanolaser oscillating at a bound-state-in-the-continuum with planar surface topography fora high Q-factor." Nanophotonics 14.10 (2025): 1645-1652.
8.Wang, Yilan, et al. "Large-angle twisted photonic crystalsemiconductor nanolasers with ultra-low thresholdsoperating in the C-band." arXiv preprintarXiv:2411.14772 (2024).
9.Dimopoulos, Evangelos, et al. "Electrically‐DrivenPhotonic Crystal Lasers with Ultra‐low Threshold." Laser& Photonics Reviews 16.11 (2022): 2200109.
10.Dhingra, Pankul, et al. "Low-threshold visible InPquantum dot and InGaP quantum well lasers grown bymolecular beam epitaxy." Journal of AppliedPhysics 133.10 (2023).
11.Jia, Hui, et al. "Low threshold InAs/InP quantum dotlasers on Si." 2025 IEEE Silicon Photonics Conference(SiPhotonics). IEEE, 2025.
12.Wang, Pinyao, et al. "Room temperature CW operationof 1.3 μm quantum dot triple-lattice photonic crystalsurface-emitting lasers with buried structure." OpticsExpress 33.13 (2025): 27429-27437.
13.Taghipour, Nima, et al. "Low‐threshold, highly stablecolloidal quantum dot short‐wave infrared laser enabled bysuppression of trap‐assisted augerrecombination." Advanced Materials 34.3 (2022):2107532.
14.Yun, Ling, et al. "Low threshold and high power fiberlaser passively mode-locked based on PbSe quantumdots." IEEE Photonics Technology Letters 36.4 (2024):247-250.
15.Tan, Yangzhi, et al. "Low-threshold surface-emittingcolloidal quantum-dot circular Bragg laser array." Light:Science & Applications 14.1 (2025): 36.1
6.Zhong, Hancheng, et al. "Ultra-low thresholdcontinuous-wave quantum dot mini-BIC lasers." Light:Science & Applications 12.1 (2023): 100.
17.Liu, Jin, et al. "Single self-assembled InAs/GaAsquantum dots in photonic nanostructures: the role ofnanofabrication." Physical review applied 9.6 (2018):064019.
18.Shih, Ching‐Wen, et al. "Self‐Aligned Photonic DefectMicrocavity Lasers with Site‐Controlled Quantum Dots."Laser & Photonics Reviews 18.7 (2024): 2301242.1
9.Yoshida, Masahiro, et al. "High-brightness scalablecontinuous-wave single-mode photonic-crystallaser." Nature 618.7966 (2023): 727-732.
20.Yan, Sai, et al. "Cavity quantum electrodynamics withmoiré photonic crystal nanocavity." NatureCommunications 16.1 (2025): 1-8.
21. Rodt, Sven, and Stephan Reitzenstein. "Integratednanophotonics for the development of fully functionalquantum circuits based on on-demand single-photonemitters. (2021)." APL Photonics 6.1.
22.Shang, Chen, et al. "Perspectives on advances inquantum dot lasers and integration with Si photonicintegrated circuits." ACS photonics 8.9 (2021): 2555-2566.
23. Phillips, C.L., Brash, A.J., Godsland, M., Martin, N.J.,Foster, A., Tomlinson, A., Dost, R., Babazadeh, N., Sala,E.M., Wilson, L. and Heffernan, J., 2024. Purcell-enhanced single photons at telecom wavelengths from aquantum dot in a photonic crystal cavity. ScientificReports, 14(1), p.4450.
24. Mozaffari, M.H. and Farmani, A., 2019. On-chipsingle-mode optofluidic microresonator dye lasersensor. IEEE sensors Journal, 20(7), pp.3556-3563.
25. Heydari, M., Zali, A.R., Gildeh, R.E. and Farmani, A.,2022. Fully Integrated, 80 GHz Bandwidth, 1.3μ mInAs/InGaAs CW-PW Quantum Dot Passively Colliding-Pulse Mode-Locked (CPM) Lasers for IR SensingApplication. IEEE sensors journal, 22(7), pp.6528-6535.
26. Farmani, A., Farhang, M. and Sheikhi, M.H., 2017.High performance polarization-independent quantum dotsemiconductor optical amplifier with 22 dB fiber to fibergain using mode propagation tuning without additionalpolarization controller. Optics & Laser Technology, 93,pp.127-132.