[1] Q. Zhang, Y. Fu, Y. Zhang, J. Xing, and H. Zhang, “Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold,” Nano Letters, vol. 21, no. 5, pp. 1903–1914, 2021.
[2] Y. Jiao, T. Fujii, and T. Baba, “InP membrane integrated photonics research,” Semiconductor Science and Technology, vol. 36, no. 1, p. 013001, 2020.
[3] K. Takeda, T. Fujii, K. Nozaki, and T. Baba, “Optical links on silicon photonic chips using ultralow-power consumption photonic-crystal lasers,” Optics Express, vol. 29, no. 16, pp. 26082–26092, 2021.
[4] T. Tomiyasu, K. Takeda, K. Nozaki, and T. Baba, “20-Gbit/s direct modulation of GaInAsP/InP membrane distributed-reflector laser with energy cost of less than 100 fJ/bit,” Applied Physics Express, vol. 11, no. 1, p. 012704, 2017.
[5] T. Aihara, K. Takeda, K. Nozaki, and T. Baba, “Heterogeneously integrated widely tunable laser using lattice filter and ring resonator on Si photonics platform,” Optics Express, vol. 30, no. 10, pp. 15820–15829, 2022.
[6] Z. Wang, Y. Liang, K. Takeda, K. Nozaki, and T. Baba, “Continuous-wave operation of 1550 nm low-threshold triple-lattice photonic-crystal surface-emitting lasers,” Light: Science & Applications, vol. 13, no. 1, p. 44, 2024.
[7] T.-Y. Lee, H. Lee, and H. Jeon, “Colloidal-quantum-dot nanolaser oscillating at a bound-state-in-the-continuum with planar surface topography for a high Q-factor,” Nanophotonics, vol. 14, no. 10, pp. 1645–1652, 2025.
[8] Y. Wang, Z. Wang, K. Takeda, and T. Baba, “Large-angle twisted photonic crystal semiconductor nanolasers with ultra-low thresholds operating in the C-band,” arXiv preprint, arXiv:2411.14772, 2024.
[9] E. Dimopoulos, K. Takeda, K. Nozaki, and T. Baba, “Electrically-driven photonic crystal lasers with ultra-low threshold,” Laser & Photonics Reviews, vol. 16, no. 11, p. 2200109, 2022.
[10] P. Dhingra, A. W. Bett, and G. Tränkle, “Low-threshold visible InP quantum dot and InGaP quantum well lasers grown by molecular beam epitaxy,” Journal of Applied Physics, vol. 133, no. 10, p. 103101, 2023.
[11] H. Jia, Y. Wang, Z. Wang, and T. Baba, “Low threshold InAs/InP quantum dot lasers on Si,” in Proc. IEEE Silicon Photonics Conf. (SiPhotonics), 2025.
[12] P. Wang, Y. Liang, Z. Wang, K. Takeda, and T. Baba, “Room temperature CW operation of 1.3 μm quantum dot triple-lattice photonic crystal surface-emitting lasers with buried structure,” Optics Express, vol. 33, no. 13, pp. 27429–27437, 2025.
[13] N. Taghipour, M. R. Biondi, S. Hoogland, and E. H. Sargent,“Low-threshold, highly stable colloidal quantum dot short-wave infrared laser enabled by suppression of trap-assisted Auger recombination,” Advanced Materials, vol. 34, no. 3, p. 2107532, 2022.
[14] L. Yun, Y. Zhang, H. Liu, and J. Wang, “Low threshold and high power fiber laser passively mode-locked based on PbSe quantum dots,” IEEE Photonics Technology Letters, vol. 36, no. 4, pp. 247–250, 2024.
[15] Y. Tan, J. Lim, Z. Wang, and H. Yang, “Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array,” Light: Science & Applications, vol. 14, no. 1, p. 36, 2025.
[16] H. Zhong, Y. Liang, Z. Wang, and T. Baba, Ultra-low threshold continuous-wave quantum dot mini-BIC lasers,” Light: Science & Applications, vol. 12, no. 1, p. 100, 2023.
[17] J. Liu, A. J. Bennett, and D. J. P. Ellis, “Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication,” Physical Review Applied, vol. 9, no. 6, p. 064019, 2018.
[18] C.-W. Shih, Y. Chen, H. Lin, and S. Chang, “Self-aligned photonic defect microcavity lasers with site-controlled quantum dots,” Laser & Photonics Reviews, vol. 18, no. 7, p. 2301242, 2024.
[19] M. Yoshida, K. De Greve, K. Ishibashi, and S. Noda, “High-brightness scalable continuous-wave single-mode photonic-crystal laser,” Nature, vol. 618, no. 7966, pp. 727–732, 2023.
[20] S. Yan, Y. Zhang, H. Zhong, and X. Liu, “Cavity quantum electrodynamics with moiré photonic crystal nanocavity,” Nature Communications, vol. 16, no. 1, pp. 1–8, 2025.
[21] S. Pechprasarn, S. Sasivimolkul, and P. Suvarnaphaet, “Fabry–Perot resonance in 2D dielectric grating for figure of merit enhancement in refractive index sensing,” Sensors, vol. 21, no. 15, p. 4958, 2021.
[22] S. Rodt and S. Reitzenstein, “Integrated nanophotonics for the development of fully functional quantum circuits based on on-demand single-photon emitters,” APL Photonics, vol. 6, no. 1, 2021.
[23] C. Shang, Y. Wan, Z. Wang, and J. Yao, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photonics, vol. 8, no. 9, pp. 2555–2566, 2021.
[24] C. L. Phillips, A. J. Brash, M. Godsland, N. J. Martin, A. Foster, A. Tomlinson, R. Dost, N. Babazadeh, E. M. Sala, L. Wilson, and J. Heffernan, “Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity,” Scientific Reports, vol. 14, no. 1, p. 4450, 2024.
[25] M. H. Mozaffari and A. Farmani, “On-chip single-mode optofluidic microresonator dye laser sensor,” IEEE Sensors Journal, vol. 20, no. 7, pp. 3556–3563, 2019.
[26] M. Heydari, A. R. Zali, R. E. Gildeh, and A. Farmani, “Fully integrated, 80 GHz bandwidth, 1.3 μm InAs/InGaAs CW-PW quantum dot passively colliding-pulse mode-locked (CPM) lasers for IR sensing application,” IEEE Sensors Journal, vol. 22, no. 7, pp. 6528–6535, 2022.
[27] A. Farmani, M. Farhang, and M. H. Sheikhi, “High-performance polarization-independent quantum dot semiconductor optical amplifier with 22 dB fiber-to-fiber gain using mode propagation tuning without additional polarization controller,” Optics & Laser Technology, vol. 93, pp. 127–132, 2017.