Modeling of Drain Current in Double-Gate Heterojunction Tunneling FETs: a Physical-Analytical Approach

Document Type : Research Paper


Department of Electrical Engineering, Semnan University, Semnan, Iran


In this paper, we develop an analytical potential model for the double-gate Heterostructure Tunneling Field-Effect Transistors (H-TFETs) to accurately predict the electrostatic potential profile of the device in all regions of operation. Using the potential model, we present appropriate relations for the tunneling distance at a specified energy level in the bandgap of the tunneling junction. Finally, based on the highest tunneling rate formalism, the minimum tunneling distance is employed to calculate the tunneling current, which is the dominant on-state current flow mechanism in the H-TFETs. We show that our models closely match the results obtained by numerical simulations, for various heterostructure devices with different material systems in a wide range of operation, from subthreshold to super threshold. 


[1]  Sant, S., Schenk, A.: Methods to Enhance the Performance of InGaAs/InP Heterojunction Tunnel FETs. IEEE Trans. Electron Devices. 63, 2169–2175 (2016).
[2]    Zhou, G., Lu, Y., Li, R., Zhang, Q., Liu, Q., Vasen, T., Zhu, H., Kuo, J.M., Kosel, T., Wistey, M., Fay, P., Seabaugh, A., Xing, H.: InGaAs/InP tunnel FETs with a subthreshold swing of 93 mV/dec and ION/IOFFratio near 106. IEEE Electron Device Lett. 33, 782–784 (2012).
[3]   Moselund, K.E., Cutaia, D., Schmid, H., Borg, M., Sant, S., Schenk, A., Riel, H.: Lateral InAs/Si p-Type Tunnel FETs Integrated on Si - Part 1: Experimental Devices. IEEE Trans. Electron Devices. 63, 4233–4239 (2016).
[4]     Ahish, S., Sharma, D., Kumar, Y.B.N., Vasantha, M.H.: Performance enhancement of Novel InAs/Si hetero double-gate tunnel fet using Gaussian doping. IEEE Trans. Electron Devices. 63, 288–295 (2016).
[5]     Strangio, S., Palestri, P., Lanuzza, M., Crupi, F., Esseni, D., Selmi, L.: Assessment of InAs/AlGaSb Tunnel-FET Virtual Technology Platform for Low-Power Digital Circuits. IEEE Trans. Electron Devices. 63, 2749–2756 (2016).
[6]     Shih, C.H., Chien, N.D.: Sub-10-nm tunnel field-effect transistor with graded SI/GE heterojunction. IEEE Electron Device Lett. 32, 1498–1500 (2011).
[7]     Dong, Y., Lining, Z., Li, X., Lin, X., Chan, M.: A Compact Model for Double-Gate Heterojunction Tunnel FETs. IEEE Trans. Electron Devices. 63, 4506–4513 (2016).
[8]     Guan, Y., Li, Z., Zhang, W., Zhang, Y.: An Accurate Analytical Current Model of Double-gate Heterojunction Tunneling FET. IEEE Trans. Electron Devices. 64, 938–944 (2017).
[9]     Kumar, S., Goel, E., Singh, K., Singh, B., Singh, P.K., Baral, K., Jit, S.: 2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a SiO2/HfO2stacked gate-oxide structure. IEEE Trans. Electron Devices. 64, 960–968 (2017).
[10]  Chander, S., Baishya, S.: A Two-Dimensional Gate Threshold Voltage Model for a Heterojunction SOI-Tunnel FET with Oxide/Source Overlap. IEEE Electron Device Lett. 36, 714–716 (2015).
[11]   Mehta, J.U., Borders, W.A., Liu, H., Pandey, R., Datta, S., Lunardi, L.: III-V Tunnel FET Model with Closed-Form Analytical Solution. IEEE Trans. Electron Devices. 63, 2163–2168 (2016).
]12]   Taur, Y., Wu, J., Min, J.: An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices. 62, 1399–1404 (2015).
[13]   Kim, S., Choi, W.Y.: Improved compact model for double-gate tunnel field-effect transistors by the rigorous consideration of gate fringing field. Jpn. J. Appl. Phys. 56, (2017).
[14]   Keighobadi, D, Mohammadi, S.. Physical and analytical modeling of drain current of double-gate heterostructure tunnel FETs. Semicond. Sci. Technol. 34, 015009 (2019). 
[15]  Mohammadi, S., Keighobadi, D. A Universal Analytical Potential Model for Double-Gate Heterostructure Tunnel FETs. IEEE Trans. Electron Devices. 66, 1605-1612 (2019).
[16]   Mitra, S.K., Goswami, R., Bhowmick, B.: A hetero-dielectric stack gate SOI-TFET with back gate and its application as a digital inverter. Superlattices Microstruct. 92, 37–51 (2016).
[17]   Taur, Y., Liang, X., Wang, W., Lu, H.: A Continuous, Analytic Drain-Current Model for DG MOSFETs, (2004)
[18]   Kuo, S.C.L. and J.B.: Modeling the Fringing Electric Field Effect on the Threshold Voltage of FD SOI nMOS DevicesWith the LDD/Sidewall Oxide Spacer Structure. Proc. IEEE Hong Kong Electron Devices Meet. 2002-Janua, 1–4 (2003).
[19]   Chen, Q., Harrell, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices. 50, 1631–1637 (2003).
[20]   Boucart, K.: Simulation of Double-Gate Silicon Tunnel FETs with a High-k Gate Dielectric. Ph.D, Swiss Fed. Inst. Technol. Lausanne. (2010).
[21]   Zhang, L., He, J., Chan, M.: A compact model for double-gate tunneling field-effect-transistors and its implications on circuit behaviors. In: Technical Digest - International Electron Devices Meeting, IEDM. pp. 143–146 (2012)
[22]   Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32, 83–91 (1961).
[23]   Bart V Van Zeghbroeck: Principles of Semiconductor Devices and Heterojunctions. (2010)
[24]          Werness, S.A., Anderson, D.J.: User manual for IDENT, a parametric and nonparametric linear systems identification package. Comput. Programs Biomed. 18, 99–108 (2016).