This article proposes a new controller for a switched-capacitor-inductor-active switched boost inverter (SCL-ASBI). The proposed controller provides a high voltage gain. This controller improves the boost factor without adding extra components to the SCL-ASB inverter. This control method increases the boost factor with a low duty cycle, and paves the way for the soft-switching condition of the switches. The control method has the shoot-through (ST) state to reduce electromagnetic interference (EMI) noises. The boost factor is flexible, owing to utilizing a phase shift in this method. The switching algorithm and theoretical analysis are discussed. The simulation results are presented to confirm the validity of the theoretical analysis and the advantages of the proposed inverter.
Jain and V. Agarwal. (2007, Sep). A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking. IEEE Trans. Power Electron. 22(5), pp. 1928–1940.
Anderson and F. Z. peng, “A class of quasi-Z-source inverters,” in Proc.Conf. Rec. IEEE-IAS Annu. Meeting, 2008, pp. 1–7.
K. Nguyen, Y. C. Lim, and S. J. Park. (2015, Oct). A comparison between single-phase quasi-Z-source, and quasi-switched boost inverters. IEEE Trans. Ind. Electron. 62(10), pp. 6336–6344.
Abu-Rub, A. Iqbal, S. M. Ahmed, F. Z. Peng, Y. Li, and G. Baoming. (2013, Jan). Quasi-Z-source inverter-based photovoltaic generation system with maximum power tracking control using ANFIS. IEEE Trans. Power Electron. 4(1), pp. 11–20.
Li, B. Ge, H. Abu-Rub, and F. Z. Peng. (2014, Feb). An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie single-phase photovoltaic power system. IEEE Trans. Ind. Informat. 10(1), pp. 399–407.
Zhou, L. Liu, and H. Li. (2013, Jun). A high-performance photovoltaic module integrated converter (MIC) based on cascaded quasi-Z-source inverters(qZSI) using eGaN FETs. IEEE Trans. Power Electron. 28(6), pp. 2727–2738.
Guo, L. Fu, C. H. Lin, C. Li, W. Choi, and J. Wang. (2013, Dec). Development of an 85-kW bidirectional quasi-Z-source inverter with DC-link feed-forward compensation for electric vehicle applications. IEEE Trans. Power Electron. 28(12), pp. 5477–5488.
Lei, D. Cao, and F. Z. Peng. (2014, Mar). Novel loss and harmonic minimized vector modulation for a current-fed quasi-Z-source inverter in HEV motor drive application. IEEE Trans. Power Electron. 29(3), pp. 1344–1357.
K. Nguyen, Y. C. Lim, and G. B. Cho. (2011, Nov). Switched-inductor quasi- Z-source inverter. IEEE Trans. Power Electron. 26(11), pp. 3183–3191.
Zhu, K. Yu, and F. L. Luo. (2010, Aug). Switched-inductor Z-source inverter. IEEE Trans. Power Electron. 25(8), pp. 2150–2158.
J. Gajanayake, L. F. Lin, G. H. Beng, S. P. Lam, and S. L. Kian, “Extended boost Z-source inverters,” in 2009 IEEE Energy Convers. Congr. Expo. ECCE, 2009, pp 3845–3852.
K. Nguyen, Y. C. Lim, and G. B. Cho. (2011, Nov). Switched-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 26(11), pp. 3183–3191.
Zhu, K. Yu and F. L. Luo. (2010, Aug). Switched-inductor Z-source inverter. IEEE Trans. Power Electron. 25(8), pp. 2150–2158.
K. Nguyen, Y. C. Lim and J. H. Choi. (2012, Aug). Two switched-inductor quasi- Z-source inverters. IET Power Electron. 5(7), pp. 1017–1025.
Fathi and H. Madadi. (2016, Feb). Enhanced-boost Z-source inverters with switched Z-impedance. IEEE Trans. Ind. Electron. 63(2), pp. 691–703.
Jagan, J. Kotturu and S. Das. (2017, Sep). Enhanced-boost quasi-Z-source inverters with two-switched impedance networks. IEEE Trans. Ind. Electron. 64(9), pp. 6885–6897.
Abbasi Bolaghi, A. Taheri, M. H. Babaei, and M. Gholami. (2021, Dec). Quasi Z-source inverter with switched-capacitor-inductor for enhancing boost factor. IET Power Electron. 14(16),pp. 2545–2562.
Abbasi Bolaghi, A. Taheri, and M. H. Babaei. (2021, May). Switched-capacitor inductor Z-source inverter with an impedance network.Int. Trans. Electr. Energ. Syst. 31(5), pp. e12529.
Zhu, B. Zhang and D. Qiu. (2019, Sep). A new nonisolated quasi-Z-source inverter with high voltage gain. IEEE J. Emerg. Sel. Topics Power Electron. 7(3), pp. 2012–2028.
Karbalaei and m. mardaneh. (2021, Jan). Uplifted-Boost switched-Inductor/Capacitor Quasi Z-Source Inverter. IEEE Ind. Electron. Mag.
Ho, T. Chun, and H. Kim. (2015, Oct). Extended Boost Active-Switched-Capacitor/Switched-Inductor Quasi-Z-Source Inverters. IEEE Trans. Power Electron. 30(10), pp. 5681–5690.
Ahmad, R. K. Singh and A. R. Beig. (2019, Dec). Switched-capacitor based modified extended high gain switched boost Z-source inverters. IEEE Access. 7, pp. 179918–179928.
Gu, Y. Chen, and B. Zhang. (2018, Oct). Enhanced-boost quasi-Z-source inverter with an active switched Z-network. IEEE Trans. Ind. Electron. 65(10), pp. 8372–8381.
X. Zhu, B. Zhang, and D. Qiu. (2018, Sep). Enhanced boost quasi-Z-source inverters with active switched-inductor boost network. IET Power Electron. 11(11), 1774–1787.
Zhu, B. Zhang, and D. Qiu. (2019, Sep). A High Boost Active Switched Quasi-Z-Source Inverter With Low Input Current Ripple. IEEE Trans. Industr. Inform. 15(9), pp. 5341–5354.
Abbasi, M. Mardaneh, and E. Jamshidpour. (2022, Feb). High Gain PWM Method and Active Switched Boost Z-Source Inverter With Less Voltage Stress on the Devices. IEEE Trans. Power Electron. 37(2), pp. 1841–1851.
Ravindranath, S. K. Mishra and A. Joshi. (2013, Dec). Analysis and PWM control of switched boost inverter. IEEE Trans. Ind. Electron. 60(12), pp. 5593–5602.
S. Nag and S. Mishra. (2014, Sep). Current-fed switched inverter. IEEE Trans. Ind. Electron. 61(9), pp. 4680–4690.
Nguyen, T. Duong, Y. Lim, and J. Choi. (2019, Sep). High Voltage Gain Quasi-Switched Boost Inverters With Low Input Current Ripple. IEEE Trans. Industr. Inform. 15(9), pp. 4857–4866.
Kumar, D. Bao, and A. R. Beig. (2021, Apr). Comparative Analysis of Extended SC-qSBI With EB-QZSI and EB/ASN-QZSI. IEEE Access. 9, pp. 61539-61547.
T. Huynh, A. V. Ho, and T. W. Chun. (2021, Jul). Switched-Capacitor-Inductor Active-Switched Boost Inverters With High Boost Ability. IEEE Access. 9, pp. 101543–101554.
M. Nguyen, T. Tran, and Y. Lim. (2019, Feb). A Family of PWM Control Strategies for Single-Phase Quasi-Switched-Boost Inverter. IEEE Trans. Power Electron. 34(2), pp. 1458–1469.
M. H. Babayi Nozadian, E. Babaei, S. H. Hosseini, and E. Shokati Asl. (2017, Jul). Steady-State Analysis and Design Considerations of High Voltage Gain Switched Z-Source Inverter with Continuous Input Current. IEEE Trans. Ind. Electron.64(7), pp. 5342–5350.
Asghari, A. and Mokhtari, Z. (2021). A Modified High Voltage Gain Switched-Capacitor-Inductor Active-Switched Boost Inverter. Modeling and Simulation in Electrical and Electronics Engineering, 1(3), 47-54. doi: 10.22075/mseee.2022.25122.1083
MLA
Asghari, A. , and Mokhtari, Z. . "A Modified High Voltage Gain Switched-Capacitor-Inductor Active-Switched Boost Inverter", Modeling and Simulation in Electrical and Electronics Engineering, 1, 3, 2021, 47-54. doi: 10.22075/mseee.2022.25122.1083
HARVARD
Asghari, A., Mokhtari, Z. (2021). 'A Modified High Voltage Gain Switched-Capacitor-Inductor Active-Switched Boost Inverter', Modeling and Simulation in Electrical and Electronics Engineering, 1(3), pp. 47-54. doi: 10.22075/mseee.2022.25122.1083
CHICAGO
A. Asghari and Z. Mokhtari, "A Modified High Voltage Gain Switched-Capacitor-Inductor Active-Switched Boost Inverter," Modeling and Simulation in Electrical and Electronics Engineering, 1 3 (2021): 47-54, doi: 10.22075/mseee.2022.25122.1083
VANCOUVER
Asghari, A., Mokhtari, Z. A Modified High Voltage Gain Switched-Capacitor-Inductor Active-Switched Boost Inverter. Modeling and Simulation in Electrical and Electronics Engineering, 2021; 1(3): 47-54. doi: 10.22075/mseee.2022.25122.1083