Low Phase Noise X-band Dielectric Resonator Oscillator

Document Type : Research Paper

Authors

Faculty of Electrical and Computer Engineering Semnan University, Semnan, Iran.

Abstract

In this article, an X-band low phase noise dielectric resonator oscillator is investigated. For this purpose, a dielectric resonator as a frequency stabilization section at the almost center frequency of 12 GHz is designed. The active device is a packaged GaAs FET (an ATF-36077 pHEMT). Firstly, the ATF36077 microwave transistor has been biased. The substrate of this nonplanar oscillator is Rogers RT/Duroid 5880. Finally, the dielectric resonator oscillator has been introduced as a series feedback structure. This presented X-band dielectric resonator oscillator, operating at nearly 12 GHz, exhibits a phase noise of -71 dBc/Hz and -133 dBc/Hz at 1-kHz and 1-MHz frequency offset, respectively. Also, the output power level of nearly 7 dBm is achieved. The second and third harmonic power levels are more than 50 dB and 30 dB lower than the main harmonic power level.

Keywords

Main Subjects


[1] M. Nick, A. Mortazawi, “Low phase noise planar oscillators based on low noise active resonators”, IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1133-1139, May 2010.
[2] M. Li, K. Ma, J. Hu, Y. Wang, “Design and fabrication of low phase noise oscillator using Q enhancement of the SISL cavity resonator”, IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4260-4268, 2019.
[3] M.S. Abouyoussef, A.M. El-Tager, H. El-Ghitani, “Ultra-low phase noise RF oscillator using high-Q quad spiral resonator”, Photon. Electromag. Research Symp., pp. 58-62, 2019.
[4] Z. Yin, T. Li, J.B. Zhang, J. Lv, “Ku-band low phase noise oscillator using the high order mode loaded with L-slot SIW resonator”, Microw. Opt. Technol. Lett., vol. 58, pp. 2325-2328, 2016.
[5] C.G. Hwang, N. H. Myung, “An oscillator with low phase noise and superior harmonic suppression characteristics based on uniplanar compact split ring resonators”, Microw. Opt. Technol. Lett., vol. 48, pp. 938-940, 2006.
[6] H. Nimehvari Varcheh, P. Rezaei, “Low phase-noise X-band oscillator based on elliptic filter and branch-line coupler”, IET Microw. Antennas Propag., vol. 13, no. 7, pp. 888-891, 2019.
[7] L. Zhou, W. Yin, J. Wang, L. Wu, “Dielectric resonators with high Q-factor for tunable low phase noise oscillators”, IEEE Trans. Compon. Packaging Manufact. Technol., vol. 3, no. 6, pp. 1008-1015, June 2013.
[8] Z. Li, X. Tang, D. Lu, Z. Cai, Y. Liu, J. Luo, “A 1.35–2.12-GHz constantly low-phase-noise VCO based on constant ABW quasi-elliptic BPF”, IEEE Microw. Wirel. Compon. Lett., vol. 29, no. 7, pp. 480-482, Jul. 2019.
[9] Z. Li, X. Tang, Y. Liu, D. Lu, Z. Cai, “Constantly low‐phase‐noise differential VCO based on balanced tunable quasi‐elliptic and constant‐ABW BPF”, Microw. Opt. Technol. Lett., vol. 63, no. 5, pp. 1334-1338, May 2021.
[10] M. Hamidkhani, H. Malekpoor, H. Oraizi, “Oscillator phase noise reduction using high-Qsc active Giuseppe peano fractal resonators”, IEEE Microw. Wirel. Compon. Lett., vol. 29, no. 5, pp. 354-356, 2019.
[11] C. Tseng, T. Huang, “Microwave voltage-controlled oscillator with harmonic suppressed stepped impedance resonator filter”, IEEE Trans. Circuits Syst. II: Express Briefs,    vol. 64, no. 5, pp. 520-524, 2017.
[12] Z. Yang, J. Dong, B. Luo, T. Yang, Y. Liu, “Low phase noise concurrent dual-band oscillator using compact diplexer”, IEEE Microw. Wirel. Compon. Lett., vol. 25, no. 10, pp. 672-674, 2015.
[13] H. Zhang, W. Kang, W. Wu, “Low phase noise oscillator based on SIW bandpass filter implementing at the Qsc-peak frequency”, J. Electromag. Wav. Appl., vol. 33, no. 3, pp. 296-303, 2019.
[14] S. S. Olokede, C. J. Okonkwo, S. B. B. Mohammad Zaki, A. A. Ayeni, “Design of GaAs pHEMT negative resistant oscillator using a novel parallel-coupled dielectric resonator,” 2018 Prog. in Electromag. Research Symp. (PIERS-Toyama), pp. 1112-1116, 2018.
[15] L. Zhou, Z. Wu, M. Sallin, J. Everard, “Broad tuning ultra-low phase noise dielectric resonator oscillators using SiGe amplifier and ceramic-based resonators”, IET Microw. Antennas Propag. vol. 1, no. 10, pp. 1064-1070, 2007.
[16] Z. Li, H. Huang, Y. Liu, J. Bao, “Low phase noise Ku-band push-push oscillator based on compact spiral-resonator array”, Microw. Opt. Technol. Lett., vol. 57, pp. 1683-1686, 2015.
[17] S.J. Ha, Y.D. Lee, Y.H. Kim, J.J. Choi, U.S. Hong, “Dielectric resonator oscillator with balanced low noise amplifier”, Electron. Lett., vol. 38 no. 24, pp. 1542-1544, 2002.
[18] S. Qi, K. Wu, Z. Ou, “Hybrid integrate HEMT oscillator with a multiple-ring nonradiative dielectric resonator feedback circuit”, IEEE Trans. Microw. Theory Tech., vol. 46, no. 10, pp. 1552-1558, Oct. 1998.
[19] D. Dancila, X. Rottenberg, A. John, H.A.C. Tilmans, W. De Raedt, I. Huynen, “V-band low phase-noise oscillator based on a cavity resonator integrated into the silicon substrate of the MCM-D platform”, Microw. Opt. Technol. Lett., vol. 54, 1788-1792, 2012.
[20] F. X. Sinnesbichler, B. Hautz, G. R. Olbrich, “A Si/SiGe HBT dielectric resonator push-push oscillator at 58 GHz”, IEEE Microw. Guided Wav. Lett., vol. 10, no. 4, pp. 145-147, Apr. 2000.
[21] C. Lee, C. Seo, “Double H-shaped metamaterial resonator for low phase noise voltage-controlled oscillator”, Microw. Opt. Technol. Lett., vol. 54, pp. 1059-1063, 2012
[22] S. Saghayi, P. Rezaei, H. Nimehvari Varcheh, “A planar UWB reconfigurable face-shaped monopole antenna with dual-band rejection for WIMAX/WLAN”, Microw. Review, vol. 25, pp. 21-26, 2019.
[23] S. Khani, A. Farmani, A. Mir, “Reconfigurable and scalable 2,4-and 6-channel plasmonic demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method”, Sci. Rep. vol. 11, 13628, 2021.
[24] S. Khani, M. Hayati, “An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide”, Superlatt. Microstruct., vol. 156, 106970, 2021.
[25] S. Khani, M. Danaie, P. Rezaei, “Fano resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications”, Plasmonics, vol. 16, pp. 1891-1908, 2021.
[26] S. Khani, M. Danaie, P. Rezaei, “Realization of a plasmonic optical switch using improved nano-disk resonators with kerr-type nonlinearity: A theoretical and numerical study on challenges and solutions”, Opt. Commun., vol. 477, 126359, 2020.
[27] S. Khani, M. Danaie, P. Rezaei, “Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides”, Plasmonics, vol. 14, pp. 53-62, 2019.
[28] S. Khani, M. Danaie, P. Rezaei, “Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators”, Opt. Eng., vol. 57, no. 1, 2018.
[29] S. Khani, M. Danaie, P. Rezaei, “Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators,” Opt. Commun., vol. 420, pp. 147-156, 2018.
[30] S. Khani, M. Danaie, P. Rezaei, A. Shahzadi, “Compact ultra-wide upper stopband microstrip dual-band BPF using tapered and octagonal loop resonators”, Frequenz, vol. 74, no. 1-2, pp. 61-71, 2020.
[31] S. Khani, S.M.H. Mousavi, M. Danaie, P. Rezaei, “Tunable Compact microstrip dual-band bandpass filter with tapered resonators”, Microw. Opt. Technol. Lett., vol. 60, pp. 1256-1261, 2018.
[32] H. Nimehvari Varcheh, P. Rezaei, “Low loss X-band waveguide bandpass filter based on rectangular resonators,” Microw. Opt. Technol. Lett., pp. 1-6, Feb. 2022.
[33] M. Fakharian, P. Rezaei, “Numerical analysis of mushroom-like and uniplanar EBG structures utilizing spin sprayed Ni (–Zn)–Co ferrite films for planar antenna”, Europ. J. Scientific Research, vol. 73, pp. 41-51, 2012.
[34] M. Fakharian, P. Rezaei, “Parametric study of UC-PBG structure in terms of simultaneous AMC and EBG properties and its applications in proximity-coupled fractal patch antenna”, Int. J. Eng., vol. 25, no. 4, pp. 347-354, 2012.
[35] A. Abdi Diman, F. Karami, P. Rezaei, A. Amn-e-Elahi, Z. Mousavirazi, T. A. Denidni, A. A. Kishk, “Efficient SIW-feed network suppressing mutual coupling of slot antenna array”, IEEE Trans. Antennas Propag., vol. 69, no. 9, pp. 6058-6063, Sept. 2021.
[36] Z. Mousavirazi, P. Rezaei, M.S. Zaman, “Improving the bandwidth of high gain Fabry-Perot antenna using EBG substrate,” IJNES – Int. J. Natural Eng. Sci., vol. 7, pp. 078-081, 2013.
[37] H. Nimehvari Varcheh, P. Rezaei, “Integration of the modified butler matrix and decoupling network for beam-steering antenna array,” Int. J. RF Microw. Comput. Aided Eng., vol. 32, no. 3, e23015, March 2022.
[38] W. Huang, J. Zhou, P. Chen, “An X-band low phase noise free-running oscillator using substrate integrated waveguide dual-mode bandpass filter with a circular cavity,” IEEE Microw. Wirel. Compon. Lett., vol. 25, no. 1, pp. 40-42, 2015.
[39] D. Dancila, X. Rottenberg, H.A.C. Tilmans, W.D. Raedt, I. Huynen, “Low phase noise oscillator at 60 GHz stabilized by a substrate integrated cavity resonator in LTCC,” IEEE Microw. Wirel. Compon. Lett., vol. 24, no. 12, pp. 887-889, 2014.
[40] K.C. Yoon, S. Ahn, J.C. Lee, “A compact low-phase noise oscillator using π-network and complimentary μ-near-zero metamaterial resonator,” Microw. Opt. Technol. Lett., vol. 61, pp. 9-14, 2019.
[41] K.C. Yoon, J.C. Lee, “A low phase noise oscillator with a high-Q split ring resonator using MNG metamaterial”, Microw. Opt. Technol. Lett., vol. 53, pp. 2967-2971, 2011.
[42] M. Nick, A. Mortazawi, “Oscillator phase-noise reduction using low-noise high-Q active resonators”, IEEE MTT Int. Microw. Symp. Dig., pp. 276-279, May 2010.
[43] M. Nick, A. Mortazawi, “A very low phase noise voltage-controlled oscillator at X-band”, IEEE MTT Int. Dig., pp. 1-4, Jun. 2011.
[44] L. Zhou, Z. Wu, “Improved phase noise for dielectric resonators oscillators with broadband tuning”, Microw. Opt. Technol. Lett., vol. 51, pp. 1312-1316, 2009.
[45] I.-B. Yom, D.-H. Shin, S.-H. Oh, K.-K. Ryu, “Push-push voltage-controlled dielectric resonator oscillator using an LTCC technology”, Microw. Opt. Technol. Lett., vol. 49, pp. 1824-1827, 2007.
[46] I.-B. Yom, D.-H. Shin, K.-K. Ryu, S.-H. Oh, M.-Q. Lee, “Phase-noise reduction of voltage-controlled dielectric resonator oscillator for the X-band,” Microw. Opt. Technol. Lett., vol. 47, pp. 515-518, 2005.
[47] M.-Q. Lee, K.-K. Ryu, I.-B. Yom, “Phase noise reduction of microwave HEMT oscillators using a dielectric resonator coupled by a high impedance inverter”, ETRI J., vol. 23, pp. 199-201, 2001.
[48] Z. Soltani, S. Asadi, E. Mehrshahi, “Single transistor low phase noise active dielectric resonator oscillator” Int. J. Microw. Wirel. Technol., vol. 11, no.10, pp. 1000-1009, 2019.
[49] Ş. S. Uğurlu, “Dielectric resonator oscillator design and realization at 4.25 GHz,” 7th Int. Conf. Elec. Electron. Eng. (ELECO), pp. 205-208, 2011.
[50] A. Grebennikov, “RF and microwave transistor oscillator design”, New York: John Wiley & Sons, 2007.
[51] K. K. Clarke, T. T. Hess, “Communication circuits: Analysis and design,” Krieger Pub. Co., 1994.