Investigating the Effect of Blood Dielectric Changes in Human Tissue Model by a Microwave Sensor

Document Type : Research Paper

Authors

Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.

Abstract

In this article, an original microwave sensor is presented which can detect the dielectric changes in the body tissue layer. The proposed sensor is created in the form of a microstrip structure and consists of U-shaped, interdigital, and waterfall parts. When the sensor is placed on a live sample, it can detect the dielectric changes that occur in the tissue layer. For this, a resonance is formed in the free load sensor at the frequency of 3.2 GHz then when the sample touches the sensor, according to the amount of relative dielectric changes of the tissue sample, the sensor resonant frequency is shifted. Considering that diseases related to glucose depend on blood, the purpose of sensing in the target sensor is the third layer of the modeled finger, i.e. blood. Therefore, the obtained results showed that the quality factor and sensitivity are 5346 and 0.5%, respectively.

Keywords

Main Subjects


[1] Cuongab LT, Bang HT, Vy TT, Tien TQ. Digital subtraction angiography-guided ethanol sclerotherapy for peripheral venous malformation: A retrospective cohort study of single centre experience. Int. J. Surg. Open. 2022;42:100475.
[2] Liu W, Song KWJ, Zhang L, Liu Y. Ultralow friction of basil-based gel in the presence of ethanol as a green lubricant for biomedical applications. Tribol. Int. 2022;165:107320.
[3] Dogan H, Basyigit IB, Genc A. Determination and modelling of dielectric properties of the cherry leaves of varying moisture content over 3.30–7.05 GHz frequency range. J. microw. power electromagn. Energy. 2020;54(3):254-270.
[4] Dalgac S, Akdogan V, Kiris S, Incesu A, Akgol O, Unal E, Basar MT, Karaaslan M. Investigation of methanol contaminated local spirit using metamaterial based transmission line sensor. Measurement. 2021;178:109360-109370.
[5] Hamouleh-Alipour A, Khani S, Ashoorirad M, Baghbani R. Trapped multimodal resonance in magnetic field enhancement and sensitive THz plasmon sensor for toxic materials accusation. IEEE Sensors J. 2023; 13(2):14057-14066.
[6] Silva CCP, Bezerra MM, Morais SMA, Araujo JIL, Serres IJR, Silva JJ, Grilo MB, Neto JSDR. Non-invasive microwave sensor for ethanol content in gasoline applications. Instrum. Sci. Technol. 2019;1-6.
[7] Samanta S, Roy P, Kar P. Sensing of higher alcohols and selective sensing of iso-amyl alcohol by poly (o-phenylenediamine) nanofiber. IEEE Sens. J. 2020;20(16):8973-8980.
[8] Kiani S, Rezaei P, Navaei M, Abrishamian MS. Microwave sensor for detection of solid material permittivity in single/multilayer samples with high quality factor. IEEE Sens. J. 2018;18(24):9971-9982.
[9] Mehrjoo Z, Ebrahimi A, Ghorbani K. Microwave resonance-based reflective mode displacement sensor with wide dynamic range. IEEE Trans. Instrum. Meas. 2022;71:8000609.
[10] Khani S, Danaie M, Rezaei P. Plasmonic all-optical metal-insulator-metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J. Computational Electron. 2021;20(1): 442-457.
[11] Kiani S, Rezaei P, Navaei M. Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection. Measurement. 2020;160:107805-107813.
[12] Yu C, Gong H, Zhang Z, Ni K, Zhao C. Temperature-compensated high-sensitivity relative humidity sensor based on band-pass filtering and vernier effect. IEEE Trans. Instrum. Meas. 2022;71:7001808.
[13] Zheng X, Jiang T. Triple notches bandstop microstrip filter based on archimedean spiral electromagnetic bandgap structure. Electronics. 2019;8(9):964-971.
[14] Navaei M, Rezaei P, Kiani S. A symmetric bar chart-shape microwave sensor with high Q-factor for permittivity determination of fluidics. Band-stop filter sensor based on SIW cavity for the non-invasive measuring of blood glucose. Int. J. Microw. Wirel. Technol. 2023;1-9.
[15] Zheng X, Pan Y, Jiang T. UWB bandpass filter with dual notched bands using T-shaped resonator and L-shaped defected microstrip structure. Micromachines. 2018;280(9):1-5.
[16] Cheng X, Hu J, Zhu K, Zhao Z. High-resolution polymer optical fibre humidity sensor utilizing single-passband microwave photonic filter. Measurement. 2021;179:109462-109472.
[17] Lio YT, Leung KW, Yang N. Compact absorptive filtering patch antenna. IEEE Trans. Antennas Propag. 2020;68(2):633-642.
[18] Nie HK, Xuan XW, Shi Q, Guo A, Li MJ, HJ L, Ren GJ. Wearable antenna sensor based on ebg structure for cervical curvature monitoring. IEEE Sens. J. 2022;22(1):315-323.
[19] Gharbi EM, Estrada MM, Garcia RF, Gil I. Determination of salinity and sugar concentration by means of a circular-ring monopole textile antenna-based sensor. IEEE Sens. J. 2021;21(21):23751-23760.
[20] Molina OO, Giraldo JD, Vera ER. Strain sensor based on rectangular microstrip antenna: numerical methodologies and experimental validation. IEEE Sens. J. 2021;21(20):22908-22917.
[21] Salek M, Celep M, Weimann T, Stokes D, Shang X, Phung GN, Kuhlmann K, Skinner J, Wang Y. Design, fabrication, and characterization of a d-band bolometric power sensor. IEEE Trans. Instrum. Meas. 2022;71:8002509.
[22] Wang F, Li H, Wang X, Ma T, Yu K, Lu Y, Zhang L, Liu Y. Temperature and curvature measurement based on low cavity loss flrd technology. IEEE Sens. J. 2022;22(3):2221-2228.
[23] Mohammadi P, Teimouri H, Mohammadi A, Demir S, Kara A. Dual band, miniaturized permittivity measurement sensor with negative-order SIW resonator. IEEE Sens. J. 2021;21(20):22695-22724.
[24] Xu K, Chen C, Tang Y, Zhang X, Wu C, Geng M, Sun L. Improving the performance of all-solid-stated planar ph sensor with heat treated process. IEEE Sens. J. 2022;22(9):8410-8417.
[25] Velez P, Enano JM, Ebrahimi A, Herrojo C, Paredes F, Scott J, Ghorbani K, Martin F. Single-frequency amplitude-modulation sensor for dielectric characterization of solids and microfluidics. IEEE. Sens. Lett. 2021;21(10):12189-12201.
[26] Ji X, Luan N, Hou D, Zhang W, Jiang X, Zhang Z, Song L, Qi Y, Liu J. Sensitivity-tunable temperature spr sensor based on side-opening grapefruit fiber with liquid mixture. IEEE. Photon. J. 2022;14(3): 6823908.
[27] Sepulveda HVL, Cervantes JLO, Saavedra CE. Multifrequency coupled-resonator sensor for dielectric characterization of liquids. IEEE Trans. Instrum. Meas. 2021;70:1-15.
[28] Kompella PLS, Sudha RG. Two-channel dual-band microwave EBG sensor for simultaneous dielectric detection of liquids. Int. J. Electron. Commun. 2022;146:154099-154107.
[29] Sorocki J, Wincza K, Gruszczynski S, Piekarz I. Direct broadband dielectric spectroscopy of liquid chemicals using microwave-fluidic two-wire transmission line sensor. IEEE Trans. Microwave Theory Tech. 2021;269(17):2569-2578.
[30] Khani S, et al. Adjustable compact dual-band microstrip bandpass filter using T-shaped resonators. Microw. Opt. Technol. Lett. 2017;59(12): 2970-2975.
[31] Kiani S, Rezaei P. Microwave substrate integrated waveguide resonator sensor for non-invasive monitoring of blood glucose concentration: Low cost and painless tool for diabetics. Measurement. 2023;219: 113232.
[32] Fu L, Huang J, Xiang Y, Chen Y, Gu W, Wu Y. A miniaturized differential microwave microfluidic sensor with high decoupling. IEEE. Microw. Wirel. Compon. Lett. 2021;31(7):909-912.
[33] Puyol R, Pétré S, Danlée Y, Walewyns T, Francis LA, Flre D. An ultra-low-power read-out circuit for interfacing novel gas sensors matrices. IEEE Sens. J. 2022;22(10):9521-9533.
[34] Herrojo C, Velez P, Enano JM, Su L, Casacuberta P, Gil M, Martin F. Highly sensitive defect detectors and comparators exploiting port imbalance in rat-race couplers loaded with step-impedance open-ended transmission lines. IEEE Sens. J. 2021;21(23):26731-26733.
[35] Kiani S, Rezaei P, Karami M, Sadeghzadeh RA. Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. Electron. Lett. 2018;54(10):667-668.
[36] Su L, Enano JM, Velez P, Casacuberta P, Gil M, Martin F. Phase-variation microwave sensor for permittivity measurements based on a high-impedance half-wavelength transmission line. IEEE. Sens. Lett. 2021;21(9):10647-10656.
[37] Nguyen KT, Tseng CH. A new microwave humidity sensor with near-field self-injection-locked technology. IEEE Sens. J. 2021;21(19):21520-21528.
 
[38] Kiani S, Rezaei P, Fakhr M. Dual-frequency microwave resonant sensor to detect non-invasive glucose level changes through the fingertip. IEEE Trans. Instrum. Measurement. 2021;70:6004608.
[39] Cai C, Wei L, Wu X, Wang D. A novel gradient thermoelectric microwave power sensors based on gaas mmic technology. Microsyst. Technol. 2021;27:243–249.
[40] Bag B, Mondal K, Sarkar PP. Dual-band dual-sense broadband circularly polarized parasitic ring loaded monopole antenna for satellite applications. Int. J. Commun. Syst. 2022;1-1.
[41] Kumar S, Kumar M, Singh A. Exploiting WiMAX for covert transmission of secret data over fading channel. Int. J. Commun. Syst. 2020;33(8):1-9.
[42] Mohammadi S, Adhikari KK, Jain MC, Zarifi MH. High-resolution, sensitivity-enhanced active resonator sensor using substrate-embedded channel for characterizing low-concentration liquid mixtures. IEEE Trans. Microwave Theory Tech. 2021;70(1):576-586.
[43] Li T, Shang H, Wang B, Mao C, Wang W. High-pressure sensor with high sensitivity and high accuracy for full ocean depth measurements. IEEE Sens. J. 2022;22(5):3994-4003.
[44] Yazdi F, Nikzamir A, Mealy T, Nada MY, Capolino F. Triple ladder lumped circuit with sixth order modal exceptional degeneracy. IEEE. Trans. Circuits. Syst. I. Regul. Pap. 2022;69(5):1910-1918.
[45] Xue F, Adedokun G, Xie D, Liu R, Zhang Y, Muhammad M, Xu L, Wu F. A low power four-channel metal oxide semiconductor gas sensor array with t-shaped structure. J. Microelectromech. Syst. 2022;31(2): 275-282.
[46] Khani S, Hayati M. Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Sci. Rep. 2022;12(1):1-19.
[47] Khani S, Hayati M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 2022;505:127534.
[48] Khani S, Hayati M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 2021;156:106970.
[49] Khani S, Danaie M, Rezaei P, Shahzadi A. Compact ultra-wide upper stopband microstrip dual-band BPF using tapered and octagonal loop resonators. Frequenz. 2020;74(1-2):61-71.
[50] Jain S, Tiwari NK, Akhtar MJ. CSIWC RF sensor for micro-fluidic non-contact quality assessment of milk. Int. J. RF Microw. Comput. Aided Eng. 2021;32(2):1-9.
[51] Zhang X, Ruan C, Wang W, Cao Y. Submersible high sensitivity microwave sensor for edible oil detection and quality analysis. IEEE Sens. J. 2021;21(12):13230-13238.
[52] Harnsoongnoen S. Metamaterial-inspired microwave sensor for detecting the concentration of mixed phosphate and nitrate in water. IEEE Trans. Instrum. Meas. 2021;70:1-8.
[53] Appusamy S, Krishnan S, Gopikrishna M, Raman S. Bio-based materials for microwave Devices: a review. J. Electron. Mater. 2021;50:1893-1901.