Compact and Tunable Microstrip Bandpass Filter Using a Disk Resonator and a U-shaped Waveguide for Wi-MAX and WLAN Applications

Document Type : Research Paper

Author

Faculty of Electrical and Computer Engineering , Semnan University, Semnan, Iran.

Abstract

In this paper, a microstrip dual-band bandpass filter containing a disk resonator and a U-shaped waveguide is designed. The proposed structure generates two pass-bands with resonance frequencies of 3.7 and 5.7 GHz which can be used for Wi-MAX and WLAN applications, respectively. It is worth mentioning that two resonance frequencies are located in a relatively wide frequency range of 0 to 10 GHz. The simulation results show that the insertion losses and return losses of two pass-bands are better than 0.62, 0.75 dB, and 21.9, 20.1 dB, respectively. Furthermore, its total size is equal to 12.9×9.5 mm2. In addition to the simple structure of the proposed filter, its second resonance frequency can be tuned by changing only the radius of the disk resonator, without the need to change the overall structure or add another element to the filter structure. Furthermore, this filter's symmetrical structure has caused no distinction between the input and output ports, which facilitates the mass production of this structure. The other remarkable features of the suggested filter are its compact size, low insertion loss, high return loss, sharp transition bands, high attenuation level in the stop-bands, wide upper stop-band bandwidth, and sharpness of transient bands.     

Keywords

Main Subjects


  • Hong, J. S. G., & Lancaster, M. J., Microstrip filters for RF/microwave applications, 2004, John Wiley & Sons.
  • Ebadi, S. M., & Khani, S. (2023). Highly-Miniaturized Nano-Plasmonic Filters Based on Stepped Impedance Resonators with Tunable Cut-Off Wavelengths. Plasmonics, 1-12.
  • Hamouleh-Alipour, A., Khani, S., Ashoorirad, M., & Baghbani, R. (2023). Trapped multimodal resonance in magnetic field enhancement and sensitive THz plasmon sensor for toxic materials accusation. IEEE Sensors Journal, 23 (13), 14057-14066.
  • Korani, N., Abbasi, A., & Danaie, M. (2023). Band-pass and band-stop plasmonic filters based on Wilkinson power divider structure. Plasmonics, 1-10.
  • Khani, S., & Hayati, M. (2022). Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Scientific reports, 12(1), 5246.
  • Korani, N., Hajshahvaladi, L., & Danaie, M. (2024). Realization of a single-mode plasmonic bandpass filter based on a ring-shaped resonator and silver nanorods. Optical and Quantum Electronics, 56(1), 23.
  • Khani, S., Danaie, M., & Rezaei, P. (2018). Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Optics Communications, 420, 147-156.
  • Khani, S., & Hayati, M. (2022). Optical sensing in single-mode filters based on surface plasmon H-shaped cavities. Optics Communications, 505, 127534.
  • Moazami, A., Hashemi, M., & Shirazi, N. C. (2019). High efficiency tunable graphene-based plasmonic filter in the THz frequency range. Plasmonics, 14(2), 359-363.
  • Khani, S., Danaie, M., & Rezaei, P. (2019). Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectronics, 13(4), 161-171.
  • Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., ... & Zhu, J. (2016). Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science advances, 2(4), e1501227.
  • Huang, Z., Li, S., Cui, X., Wan, Y., Xiao, Y., Tian, S., ... & Lee, C. S. (2020). A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation. Journal of Materials Chemistry A, 8(21), 10742-10746.
  • Ebadi, S. M., & Khani, S. (2023). Design of a tetra-band MIM plasmonic absorber based on triangular arrays in an ultra-compact MIM waveguide. Optical and quantum electronics, 55(6), 482.
  • Ye, Y., Xie, Y., Song, T., Wang, Y., Chai, J., Liu, B., & Liu, Y. (2019). Design of a novel plasmonic splitter with variable transmissions and selectable channels. IEEE Transactions on Nanotechnology, 18, 617-625.
  • Gao, X., Zhou, L., Yu, X. Y., Cao, W. P., Li, H. O., Ma, H. F., & Cui, T. J. (2015). Ultra-wideband surface plasmonic Y-splitter. Optics Express, 23(18), 23270-23277.
  • Chang, K. W., & Huang, C. C. (2016). Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide. Scientific reports, 6(1), 19609.
  • Khani, S., & Afsahi, M. (2023). Optical refractive index sensors based on plasmon-induced transparency phenomenon in a plasmonic waveguide coupled to stub and nano-disk resonators. Plasmonics, 18(1), 255-270.
  • Duan, Q., Liu, Y., Chang, S., Chen, H., & Chen, J. H. (2021). Surface plasmonic sensors: Sensing mechanism and recent applications. Sensors, 21(16), 5262.
  • Khani, S., & Hayati, M. (2021). An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices and Microstructures, 156, 106970.
  • Ooi, K. J., Chu, H. S., Bai, P., & Ang, L. K. (2014). Electro-optical graphene plasmonic logic gates. Optics letters, 39(6), 1629-1632.
  • Yang, X., Hu, X., Yang, H., & Gong, Q. (2017). Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics, 6(1), 365-376.
  • Al-Musawi, H. K., Al-Janabi, A. K., Al-abassi, S. A., Abusiba, N. A. H. A., & Al-Fatlawi, N. A. H. Q. (2020). Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands. Optik, 223, 165416.
  • Khani, S., Danaie, M., & Rezaei, P. (2021). Fano Resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications. Plasmonics, 16(6), 1891-1908.
  • Ayata, M., Fedoryshyn, Y., Heni, W., Baeuerle, B., Josten, A., Zahner, M., ... & Leuthold, J. (2017). High-speed plasmonic modulator in a single metal layer. Science, 358(6363), 630-632.
  • Khani, S., Danaie, M., & Rezaei, P. (2022). Plasmonic all-optical modulator based on the coupling of a surface Plasmon stub filter and a meandered MIM waveguide. Optical and Quantum Electronics, 54(12), 849.
  • Chen, J., Li, Z., Zhang, X., Xiao, J., & Gong, Q. (2013). Submicron bidirectional all-optical plasmonic switches. Scientific reports, 3(1), 1451.
  • Wu, H. Y., Huang, Y. T., Shen, P. T., Lee, H., Oketani, R., Yonemaru, Y., ... & Chu, S. W. (2016). Ultrasmall all-optical plasmonic switch and its application to superresolution imaging. Scientific reports, 6(1), 24293.
  • Khani, S., Farmani, A., & Rezaei, P. (2023). Optical resistance switch for optical sensing. In Artificial Intelligence in Mechatronics and Civil Engineering: Bridging the Gap (pp. 1-38). Singapore: Springer Nature Singapore.
  • Bergthold, M., Wasserman, D., & Muhowski, A. J. (2022). Plasmon-enhanced distributed Bragg reflectors. Infrared Physics & Technology, 125, 104236.
  • Wang, S., Hu, H., Liu, X., & Ding, T. (2023). Non-dispersive Fano resonances in hybrid plasmonic-distributed Bragg reflector structures. Nanophotonics, 12(16), 3211-3216.
  • Khani, S., Farmani, A., & Mir, A. (2021). Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Scientific Reports, 11(1), 13628.
  • Azar, M. T. H., Zavvari, M., Arashmehr, A., Zehforoosh, Y., & Mohammadi, P. (2017). Design of a high-performance metal–insulator–metal plasmonic demultiplexer. Journal of Nanophotonics, 11(2), 026002-026002.
  • Khani, S., Danaie, M., & Rezaei, P. (2018). Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Optical Engineering, 57(10), 107102-107102.
  • Navaei, M., & Rezaei, P. (2024). Permittivity measurement of fluidics with high sensitivity by chandelier form microwave sensor. Microwave and Optical Technology Letters, 66(1), e33955.
  • Khani, S., & Hayati, M. (2017). Compact microstrip lowpass filter with wide stopband and sharp roll-off. Microw J, 60(11), 86-92.
  • Sharbati, V., Rezaei, P., & Fakharian, M. M. (2016). A planar UWB antenna with switchable single/double band-rejection characteristics. Radioengineering, 25(3), 429-435.
  • Khani, S., Danaie, M., & Rezaei, P. (2019). Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth. Analog Integrated Circuits and Signal Processing, 98, 367-376.
  • Fakharian, M. M., & Rezaei, P. (2014). Very compact palmate leaf-shaped CPW-FED monopole antenna for UWB applications. Microwave and Optical Technology Letters, 56(7), 1612-1616.
  • Sharbati, V., Rezaei, P., & Fakharian, M. M. (2017). Compact planar UWB antenna with enhanced bandwidth and switchable band-notch function for WLAN and DSRC. IETE journal of research, 63(6), 805-812.
  • Khani, S., Danaie, M., Rezaei, P., & Shahzadi, A. (2020). Compact ultra-wide upper stopband microstrip dual-band BPF using tapered and octagonal loop resonators. Frequenz, 74(1-2), 61-71.
  • Najafi, M., & Hazeri, A. R. (2021). Microstrip dual-narrowband bandpass filter with independent passbands. Wireless Personal Communications, 119, 3503-3516.
  • Moitra, S., & Dey, R. (2020). Design of dual-band and Tri-band Bandpass Filter (BPF) with Improved inter-band isolation using DGS integrated coupled microstrip lines structures. Wireless Personal Communications, 110(4), 2019-2030.
  • Rekha, T. K., Abdulla, P., Jasmine, P. M., & Anu, A. R. (2020). Compact microstrip lowpass filter with high harmonics suppression using defected structures. AEU-International Journal of Electronics and Communications, 115, 153032.
  • Yamanaka, K., Ishii, M., Akasegawa, A., Nakanishi, T., Baniecki, J. D., & Kurihara, K. (2008). 5 GHz HTS power filters with TM-mode microstrip-disk resonators. Physica C: Superconductivity, 468(15-20), 1950-1953.
  • Yang, Q., Liu, S., Shi, H., Xu, K. D., Dai, X., Du, H., & Zhang, A. (2021). Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes. Materials, 14(10), 2614.
  • Bhat, Z. A., Sheikh, J. A., Khan, S. D., Rehman, R., & Ashraf, S. (2021). Compact and novel coupled line microstrip bandpass filter based on stepped impedance resonators for millimeter-wave communications. Frequenz, 75(5-6), 147-152.
  • Tang, S. C., Chu, P. C., Kuo, J. T., Wu, L. K., & Lin, C. H. (2022). Compact microstrip wideband cross-coupled inline bandpass filters with miniaturized stepped-impedance resonators (SIRs). IEEE Access, 10, 21328-21335.
  • Navaei, M., Rezaei, P., & Kiani, S. (2022). Microwave split ring resonator sensor for determination of the fluids permittivity with measurement of human milk samples. Radio Science, 57(7), 1-11.
  • Pandey, P., Pandey, A. K., & Chauhan, R. K. (2022). Novel Tri-band Microstrip Bandpass Filter with Stub Loaded in Circular Ring Resonator. In VLSI, Microwave and Wireless Technologies: Select Proceedings of ICVMWT 2021 (pp. 357-366). Singapore: Springer Nature Singapore.

 

  • Vineetha, K. V., Kumar, M. S., & Madhav, B. T. P. (2021, February). Analysis of Triple Band Split Ring Resonator Based Microstrip Bandpass Filter. In Journal of Physics: Conference Series (Vol. 1804, No. 1, p. 012149). IOP Publishing.
  • Song, K., Zhu, Y., Zhao, M., Fan, M., & Fan, Y. (2017). Miniaturized bandpass filter using dual-mode hexagonal loop resonator. International Journal of Microwave and Wireless Technologies, 9(5), 1003-1008.
  • Stefanovski Pajović, S. L., Potrebić, M. M., Tošić, D. V., & Cvetković, Z. Ž. (2016). Fabrication parameters affecting the implementation of waveguide bandpass filter with complementary split-ring resonators. Journal of Computational Electronics, 15, 1462-1472.
  • Khani, S., Makki, S. V. A. D., Mousavi, S. M. H., Danaie, M., & Rezaei, P. (2017). Adjustable compact dual-band microstrip bandpass filter using T-shaped resonators. Microwave and Optical Technology Letters, 59(12), 2970-2975.
  • Ogbodo, E., Wang, Y., & Yeo, K. S. (2016). Microstrip dual-band bandpass filter using U-shaped resonators. Progress In Electromagnetics Research Letters, 59, 1-6.
  • Khani, S., Mousavi, S. M. H., Danaie, M., & Rezaei, P. (2018). Tunable compact microstrip dual-band bandpass filter with tapered resonators. Microwave and Optical Technology Letters, 60(5), 1256-1261.
  • Karami, F., Rezaei, P., Amn-e-Elahi, A., Mousavirazi, Z., Denidni, T. A., & Kishk, A. A. (2020). A compact high-performance patch array with suppressed cross polarization using image feed. 
  • Razi, Z. M., & Rezaei, P. (2020). A two-layer beam-steering array antenna with 4× 4 modified Butler matrix fed network for switched beam application. International Journal of RF and Microwave Computer-Aided Engineering, 30(2), e22028.
  • Siahkamari, H., Yasoubi, Z., Jahanbakhshi, M., Mousavi, S. M. H., Siahkamari, P., Nouri, M. E., ... & Azadi, R. (2018). Design of compact Wilkinson power divider with harmonic suppression using T-shaped resonators. Frequenz, 72(5-6), 253-259.
  • Mohammad Hadi Mousavi, S., Salar Rahimi, M., Malakooti, S. A., Afzali, B., & Singh Virdee, B. (2016). A broadband out‐of‐phase gysel power divider based on a dual-band circuit with a single fixed isolation resistor. International Journal of RF and Microwave Computer-Aided Engineering, 26(9), 796-802.
  • Roshani, S., Yahya, S. I., Mezaal, Y. S., Chaudhary, M. A., Al-Hilali, A. A., Mojirleilani, A., & Roshani, S. (2023). Design of a compact quad-channel microstrip diplexer for L and S-band applications. Micromachines, 14(3), 553.
  • Lu, Q. Y., Zhang, Y. J., Cai, J., Qin, W., & Chen, J. X. (2020). Microstrip tunable diplexer with separately designable channels. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), 2983-2987.
  • Varcheh, H. N., Rezaei, P., & Kiani, S. (2023). A modified Jerusalem microstrip filter and its complementary for low phase noise X-band oscillator. International Journal of Microwave and Wireless Technologies, 15(10), 1707-1716.
  • Bayati, M. S., Mousavi, S. M. H., & Makki, S. V. A. D. (2022). Combination of absorptive notch filter and tunable dual-band conventional notch filter. Microwave and Optical Technology Letters, 64(1), 30-35.
  • Badamchi, B., Valizade, A., Rezaei, P., & Badamchi, Z. (2014). A reconfigurable square slot antenna with a switchable single band, UWB, and UWB with band notch function performances. Applied Computational Electromagnetics Society Journal, 29(5), 383.
  • Ebadi, S. M., Khani, S., & Örtegren, J. (2024). Design of miniaturized wide band-pass plasmonic filters in MIM waveguides with tailored spectral filtering. Optical and Quantum Electronics, 56(5), 1-24.
  • Danaie, M., Khani, S., Noorozzadeh, E., & Vahdani, M. (2019). Improving the performance of cadmium telluride solar cell (CdTe) with different buffer layers. Iranian Journal of Physics Research, 19(1), 139-147.
  • Sun, S., Shi, J., Zhu, L., Rustagi, S. C., Kang, K., & Mouthaan, K. (2007). 40 GHz compact TFMS meander-line bandpass filter on silicon substrate. Electronics Letters, 43(25), 1433-1434.
  • Hinojosa, J., Martínez-Viviente, F. L., & Alvarez-Melcon, A. (2021). Compact double-notch coplanar and microstrip bandstop filters using metamaterial—inspired open ring resonators. Electronics, 10(3), 330.
  • Ye, Y., Wu, Y., Chen, J., Su, G., Wang, J., & Liu, J. (2023). Intelligent Design of Hairpin Filters Based on Artificial Neural Network and Proximal Policy Optimization. Applied Sciences, 13(16), 9379.
  • Chomtong, P., & Akkaraekthalin, P. (2014). A triple-band bandpass filter using tri-section step-impedance and capacitively loaded step-impedance resonators for GSM, WiMAX, and WLAN systems. Frequenz, 68(5-6), 227-234.
  • Lin, L., Sun, S. J., Wu, B., & Liang, C. H. (2014). Dual-band bandpass filter with wide upper stopband using quad-mode stepped impedance stub-loaded resonator. Electronics Letters, 50(16), 1145-1146.
  • Ieu, W., Zhang, D., & Zhou, D. (2017). High-selectivity dual-mode dual-band microstrip bandpass filter with multi-transmission zeros. Electronics Letters, 53(7), 482-484.
  • Duan, Q., Song, K., Chen, F., & Fan, Y. (2015). Compact dual-band bandpass filter using simply hybrid structures. Electronics Letters, 51(16), 1265-1266.
  • Danaeian, M., Zarezadeh, E., & Ghayoumi-Zadeh, H. (2018). A compact and high-performance dual-band bandpass filter based on unbalanced composite right/left-handed transmission lines for WLANs Analog Integrated Circuits and Signal Processing, 94, 469-479.
  • Avinash, K. G., & Srinivasa Rao, I. (2017). Compact dual-band bandpass filter based on the dual-mode modified star-shaped resonator. Microwave and Optical Technology Letters, 59(3), 505-511.
  • Mohammadi, B., Valizade, A., Nourinia, J., & Rezaei, P. (2015). Design of a compact dual-band-notch ultra-wideband bandpass filter based on wave cancellation method. IET Microwaves, Antennas & Propagation, 9(1), 1-9.
  • Mousavi, S. M. H., Makki, S. V. A., Alirezaee, S., & Malakooti, S. A. (2019). Design of a narrow dual-band BPF with an independently tunable passband. Electronics Letters, 55(9), 542-543.
  • Ghaderi, A., Golestanifar, A., & Shama, F. (2017). Design of a compact microstrip tunable dual-band bandpass filter. AEU-International Journal of Electronics and Communications, 82, 391-396.
  • Huang, F., Wang, J., & Zhu, L. (2016). A new approach to design a microstrip dual-mode balun bandpass filter. IEEE Microwave and Wireless Components Letters, 26(4), 252-254.