Wide Band THz Transmitarray Antenna Based on Graphene Slotted Lattice

Document Type : Research Paper

Authors

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Abstract

A novel terahertz (THz) Transmitarray antenna using an identically shaped slotted graphene lattice with wide bandwidth, is presented in this paper. The transmissive surface consists of graphene frequency selective surfaces (FSSs), using at THz frequencies. The graphene FSS consists of a double layer 11×11 unit cells array on two dielectric layers. The total thickness of the structure is only at center frequency of 14 THz. The continuous slotted graphene sheets are connected to electrical bias, to control the chemical potential level of the graphene layers. A wideband, high gain, and high-efficiency transmitarray antenna using the presented graphene unit cells array, has been designed. Simulation results are shown the transmitarray antenna peak gain is 29.2 dB at 14 THz. The wideband transmitarray with a 3-dB gain bandwidth of about 30% and a 41.87% aperture efficiency is investigated.

Keywords

Main Subjects


  1. A. Maier "Plasmonics: Fundamentals and Applications" 2007 Springer Science and Business Media LLC.
  2. Hamouleh-Alipour, S. Khani, M. Ashoorirad, R. Baghbani. Trapped multimodal resonance in magnetic field enhancement and sensitive THz plasmon sensor for toxic materials accusation. IEEE Sensors J. 2023; 13(2):14057-14066.
  3. Khani, M. Danaie, P. Rezaei, “Plasmonic all-optical modulator based on the coupling of a surface Plasmon stub-filter and a meandered MIM waveguide,” Optical and Quantum Electronics, vol. 54, no. 12, pp. 849, 2022.
  4. H. Asl, M. Khajenoori, Green extraction in separation technology, CRC Press, 2021.
  5. Khani, M. Danaie, and P. Rezaei. “Plasmonic all-optical metal insulator-metal switches based on silver nano-rods, comprehensive theoretical analysis, and design guidelines.” J. Computational Electron. 2021;20(1): 442-457.
  6. Jablan, H. Buljan, M. Soljačić, "Plasmonics in graphene at infrared frequencies" Physical Review B 80, 245435 (2009).
  7. H. L. Koppens, D. E. Chang, and F. Javier García de Abajo "Graphene plasmonics: A platform for strong light_matter interactions," Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK.
  8. M. Ebadi, S. Khani, Highly-miniaturized nano-plasmonic filters based on stepped impedance resonators with tunable cut-off wavelengths, Plasmonics 18 (4), 1607-1618, 2023.
  9. Einarsson, and J. Bird. "Active plasmonic antenna arrays for terahertz frequency communications," Defense Technical Information Center, (2023): 35.
  10. R. Jalalvand, Z. Rashidi, et al. “Sensitive and selective simultaneous biosensing of nandrolone and testosterone as two anabolic steroids by a novel biosensor assisted by second-order calibration,” Steroids, 189 (2023): 109138.
  11. Mahankali, S. Mondal, R. R. Thipparaju, and S. Mohandoss. "Graphene-based waveguide fed hybrid plasmonic terahertz patch antenna." Frequenz 78, no. 1-2 (2024): 71-78.
  12. S. Cao, L. J. Jiang, and A. E. Ruehli. "An equivalent circuit model for graphene-based terahertz antenna using the PEEC method" IEEE Transactions on Antennas and Propagation, vol. 64, no. 4, April 2016.
  13. Khodadadi, M. Babaeinik, et al. "Triple-band metamaterial perfect absorber for refractive index sensing in THz frequency." Optical & Quantum Electronics 55(5) (2023): 431.
  14. Zamzam, P. Rezaei, Y. I. Abdulkarim, and O. M. Daraei. "Graphene-based polarization-insensitive metamaterials with perfect absorption for terahertz biosensing applications: Analytical approach." Optics & Laser Technology 163 (2023): 109444.
  15. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
  16. Hadipour, P. Rezaei, “A graphene-based triple band THz metamaterial absorber for cancer early detection,” Optical and Quantum Electronics, vol. 55, no. 13, pp. 1122, 2023.
  17. W. Hanson. "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene." Journal of Applied Physics 103, no. 6 (2008).
  18. Zamzam, P. Rezaei, “Renovation of dual-band to quad-band polarization-insensitive and wide incident angle perfect absorber based on the extra graphene layer,” Micro and Nanostructures, vol. 168, pp. 207261, August 2022.
  19. Kiani, P. Rezaei, M. Fakhr, “On-chip coronavirus shape antenna for wideband applications in terahertz band,” Journal of Optics, vol. 52, no. 2, pp. 860-867, 2023.
  20. G. Olabi, M. A. Abdelkareem, T. Wilberforce, E.T. Sayed. "Application of graphene in energy storage device–A review." Renewable & Sustainable Energy Reviews 135 (2021): 110026.
  21. Zamzam, P. Rezaei, O. Mohsen Daraei, S. A. Khatami “Band reduplication of perfect metamaterial terahertz absorber with an added layer: Cross symmetry concept,” Optical and Quantum Electronics, vol. 55, 391, 2023.
  22. Soleiman Meiguni, and A. Ghobadi-Rad. "WLAN substrate integrated waveguide filter with novel negative coupling structure." Modeling and Simulation in Electrical and Electronics Engineering 1, no. 2 (2015): 15-18.
  23. Kiani, F. Tavakkol Hamedani, P. Rezaei, “Polarization controlling plan in graphene-based reconfigurable microstrip patch antenna,” Optik, vol. 244, 167595, pp. 1-10, 2021.
  24. Ullah, G. Witjaksono, I. Nawi, N. Tansu, M. I. Khattak, and M. Junaid. "A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications." Sensors 20, no. 5 (2020): 1401.
  25. Yaghobi, M.R.M. Moghaddam. "Design processes linear permanent magnet electrical vernier machines for future research directions: A review." Modeling and Simulation in Electrical and Electronics Engineering 2 (2) (2022): 29-36.
  26. Karami, et al. “Modified planar sensor for measuring the dielectric constant of liquid materials.” Electronics Letters 53 (19) (2017): 1300-1302.
  27. Zheng, et al. "Ultra wideband tunable terahertz metamaterial absorber based on single-layer graphene strip." Diamond and Related Materials, 141 (2024): 110713
  28. Khani, M. Danaie, and P. Rezaei. "Fano Resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications." Plasmonics 16, no. 6 (2021): 1891-1908.
  29. M. Ebadi, S. Khani, and J. Örtegren. "Design of miniaturized wide band-pass plasmonic filters in MIM waveguides with tailored spectral filtering." Optical and Quantum Electronics 56, no. 5 (2024): 1-24.
  30. Korani, A. Abbasi, M. Danaie. “Band-pass and band-stop plasmonic filters based on Wilkinson power divider structure.” Plasmonics 19 (2) (2024): 733-742.
  31. Kiani, P. Rezaei. “Microwave substrate integrated waveguide resonator sensor for non-invasive monitoring of blood glucose concentration: Low cost and painless tool for diabetics.” Measurement 219 (2023): 113232.
  32. M. Ebadi, S. Khani, and J. Örtegren. "Ultra-compact multifunctional Surface plasmon device with tailored optical responses." Results in Physics 61 (2024): 107783.
  33. Khani, A. Farmani, and P. Rezaei. "Optical resistance switch for optical sensing." Optical Imaging and Sensing: Materials, Devices and Applications (2023): 83-122.
  34. H. Ramazannia, P. Rezaei, and F.T. Hamedani. "High-efficient wideband transmitarray antenna." IEEE Antennas and Wireless Propagation Letters 17, no. 5 (2018): 817-820.
  35. Ghaderi, and P. Rezaei. "Low profile wideband high gain transmitarray antenna for Ku band applications." Optics Communications (2024): 130701.
  36. Giddens, L. Yang, J. Tian, and Y. Hao. "Mid-infrared reflect-array antenna with beam switching enabled by continuous graphene layer." IEEE Photonics Technology Letters 30, no. 8 (2018): 748-751.
  37. H. Ramazannia Tuloti, P. Rezaei, F.T. Hamedani, “Unit-cell with flexible transmission phase slope for ultra-wideband transmitarray antennas,” IET Microwaves, Antennas & Propagation, vol. 13, no. 10, pp. 1522-1528, 2019.
  38. P. Chen, L. S. Wu, Y. Huang, K. X. Song, Y. P. Zhang, and J. F. Mao. "Terahertz transmit-array antenna with specific beamwidth based on thin film technology." IEEE Transactions on Antennas and Propagation (2024).
  39. Yang, J. Deng, and Q. Cao. "Terahertz Transmitarray Antenna Using Rotated Z-shaped Elements." In IEEE 2020 Cross-Strait Radio Science & Wireless Technology Conference (CSRSWTC), pp. 1-3, 2020.
  40. A. Falkovsky, "Unusual field and temperature dependence of the Hall effect in graphene." Physical Review B 75, no. 3 (2007): 033409.
  41. P. Gusynin, S.G. Sharapov, J.P. Carbotte. "Magneto-optical conductivity in graphene." Journal of Physics: Condensed Matter 19, no. 2 (2006): 026222.
  42. Danaeifar, N. Granpayeh, N Asger Mortensen, and Sanshui Xiao " Equivalent conductivity method: straightforward analytical solution for metasurface-based structures " J. Phys. D: Appl. Phys. 48, IOP Publishing, 2015.
  43. M. Hassan, S. H. Zainud-Deen, and H. A. Malhat. "Compact multi-function single/dual-beam graphene lens antenna for terahertz applications." IEEE 33rd National Radio Science Conference (NRSC), pp. 41-48, 2016.
  44. T. Li, S. Sun, N. Qi, and X. Shi. “Reconfigurable graphene circular polarization Reflectarray/Transmitarray Antenna,” Frequenz 73, no. 3-4 (2019): 77-88.
  45. H. Zainud-Deen, A.M. Mabrouk, and H.A.E. Malhat. “Terahertz graphene based metamaterial transmitarray,” Wireless Personal Communications 100 (2018): 1235-1248.
  46. Huang, John, and Jose Antonio Encinar. Reflectarray antennas. John Wiley & Sons, 2007.
  47. Rudrapati. "Graphene: Fabrication methods, properties, and applications in modern industries." Graphene Production and Application 1 (2020).
  48. A. Malhat, S. H. Zainud-Deen, and S. M. Gaber. "Circularly polarized graphene-based transmitarray for terahertz applications." IEEE XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), pp. 1-4, 2014.
  49. Shubham, D. Samantaray, S. K. Ghosh, Smrity Dwivedi, and Somak Bhattacharyya. "Performance improvement of a graphene patch antenna using metasurface for THz applications." Optik, 264 (2022): 169412.
  50. W. Miao, Z. Liu, Z. C. Hao, Y. Zeng, D. Zhu, J. H. Zhao, C. Y. Ding, L. Cheng, L. Zhao, W. Hong. "A 1.0-THz High-Gain Metal-Only Transmit-Array Antenna Based on High-Precision UV-LIGA Microfabrication Technology." IEEE Transactions on Terahertz Science and Technology (2023).
  51. P. Chen, L. S. Wu, Y. Huang, K. X. Song, Y. P. Zhang, and J. F. Mao. "Terahertz Transmit-Array Antenna with Specific Beamwidth Based on Thin Film Technology." IEEE Transactions on Antennas and Propagation (2024).
  52. W. Miao, Z. C. Hao, D. Q. Yu, C. Y. Ding, and F. Wu. "A W-band high-gain bilayer transmit-array antenna employing Huygens’ resonance." IEEE Antennas and Wireless Propagation Letters 22, no. 5 (2023): 1184-1188.
  53. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle. "Terahertz technology and its applications." Drug Invention Today 5, no. 2 (2013): 157-163.
  54. Shi, S. Yuan, J. Zhou, and P. Jiang. "Terahertz technology and its applications in head and neck diseases." IScience 26, no. 7 (2023).
  55. Ma, Y. Yang, B. Li, and H. Guerboukha. "Application of Terahertz Frequency in Substance Detection and Recognition." Frontiers in Physics 10 (2022): 959847.