Design and Simulating an X-Band Light Weight Phase Array Antenna with Integrated Phase Shifter

Document Type : Research Paper

Authors

1 Imam Hossein University, Tehran, Iran.

2 Islamic Azad University Tehran Branch, Tehran, Iran.

Abstract

The advancement of technology has significantly increased the importance of defense systems that can scan and identify attacking targets. These systems rely on phased array antennas to achieve their functionality. The beam remains fixed in a perpendicular orientation without such antennas, preventing effective target detection. Historically, beam rotation was accomplished either mechanically or electronically. Mechanical methods involved the use of levers that required constant rotation, whereas electronic beam rotation was enabled solely by phased array antennas. This process necessitates the use of phase shifters, which are typically implemented using either pin diodes or ferrites. In this article, pin diodes are utilized due to their advantages, including high switching speed, reversibility, and superior availability compared to ferrites.




row


Parameters


Amount




1


Total angle covered


45Degree




2


half power beam width


°18




3


Angle change step


Less than 5°




4


Polarization


linear




5


Return Loss (VSWR)


Less than 1.5




6


Total weight (antenna, control board, and feeding network)


1 kilogram




7


Dimensions


15 cm × 15 cm × 10 mm




8


Tolerable power


1 watt




9


A(area)


126mm




10


Horn a
 


35mm




11


Horn b


27mm




12


horn flare length


2inch




13


C


 




14


Center frequency


9.5 G




15


λ=c/f


3× /9.5=31.5




 Rather than placing all the PIN diodes on a single unit and rotating the entire antenna pattern to the desired angle, this approach proves to be inefficient, as replacing the PIN diodes each time would be impractical. Additionally, constructing such a system would be highly complex. To address these challenges, a more efficient solution involves quantizing the PIN diode phases into two discrete states: 0° (off) and 180° (on), which are incorporated into a single-bit unit cell with dimensions of 7 × 7. This configuration allows for the beam to be rotated to the desired angle while maintaining system simplicity. However, one important characteristic of this type of antenna is that, as the scanning coverage angle increases, the antenna gain decreases.

Keywords

Main Subjects


[1]     D. Liao, Y. Zhang, and H. Wang, “Wide-Angle Frequency-Controlled Beam-Scanning Antenna Fed by Standing Wave Based on the Cutoff Characteristics of Spoof Surface Plasmon Polaritons,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 7, pp. 1238–1241, 2018, doi: 10.1109/LAWP.2018.2841006.
[2]     J. Abraham and T. Mathew, “A novel dual-band microstrip patch array,” 2015 IEEE Appl. Electromagn. Conf. AEMC 2015, pp. 6–7, 2016, doi: 10.1109/AEMC.2015.7509235.
[3]     L. Di Palma, “1-bit reconfigurable unit-cell based on PIN diodes for,” 2016.
[4]     P. F. McManamon et al.., “Optical phased array technology,” Proc. IEEE, vol. 84, no. 2, pp. 268–298, Feb. 1996, doi: 10.1109/5.482231.
[5]     P. McManamon, “An overview of optical phased array technology and status,” in Proc.SPIE, T. R. Wolinski, M. Warenghem, and S.-T. Wu, Eds., Sep. 2005, p. 59470I. Doi: 10.1117/12.631412.
[6]     H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, “60-GHz Electronically Reconfigurable Large Reflectarray Using Single-Bit Phase Shifters,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2524–2531, Jul. 2011, doi: 10.1109/TAP.2011.2152338.
[7]     A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett., vol. 39, no. 15, p. 4575, Aug. 2014, doi: 10.1364/OL.39.004575.
[8]     A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Transactions on Wireless Communications,” IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2260–2269, May 2012, doi: 10.1109/TAP.2012.2189716.
[9]     F. Sboui, L. Latrach, and A. Gharsallah, “Design of SIW Frequency Agile Antenna Based on a Varactor Loaded on U-Slot,” Mediterr. Microw. Symp., vol. 2018-Octob, pp. 54–56, 2018, doi: 10.1109/MMS.2018.8611792.
[10]   O. Manoochehri, D. Erricolo, A. Darvazehban, and F. Monticone, “Design of compact beam-steering active slot antennas with a metasurface reflector,” 2019 United States Natl. Comm. URSI Natl. Radio Sci. Meet. Usn. NRSM 2019, pp. 1–2, 2019, doi: 10.23919/USNC-URSI-NRSM.2019.8712996.
[11]   W. Li and Y. Zhao, “A pattern reconfigurable patch antenna for wide-angle scanning phased array,” 2016 IEEE/ACES Int. Conf. Wirel. Inf. Technol. ICWITS 2016 Syst. Appl. Comput. Electromagn. ACES 2016 - Proc., pp. 3–4, 2016, doi: 10.1109/ROPACES.2016.7465428.
[12]   O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “10-GHz Low-Loss Liquid Metal SIW Phase Shifter for Phased Array Antenna,” IEEE Trans. Wirel. Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014, doi: 10.1109/TWC.2014.011714.130846.
[13]   S. Alkaraki et al.., “10-GHz Low-Loss Liquid Metal SIW Phase Shifter for Phased Array Antennas,” IEEE Trans. Microw. Theory Tech., vol. 71, no. 11, pp. 5045–5059, Nov. 2023, doi: 10.1109/TMTT.2023.3308160.
[14]   A. Clemente et al., “Reconfigurable transmitarray antennas at,” 2022.
[15]   L. Vinet and A. Zhedanov, “A ‘missing’ family of classical orthogonal polynomials,” J. Phys. A Math. Theor., vol. 44, no. 8, p. 085201, Feb. 2011, doi: 10.1088/1751-8113/44/8/085201.
[16]   C. A. Balanis, Handbook, Modern Antenna. 2008.
[17]   S. H. Ramazannia Tuloti, P. Rezaei, and F. Tavakkol Hamedani, “High-Efficient Wideband Transmitarray Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. PP, p. 1, Mar. 2018, doi: 10.1109/LAWP.2018.2817363.
[18]   R. T. S.H., R. P., and T. H. F., “Unit cell with flexible transmission phase slope for ultra-wideband transmitarray antennas,” IET Microwaves, Antennas Propag., vol. 13, no. 10, pp. 1522–1528, Aug. 2019, doi: 10.1049/iet-map.2018.5288.