Asymmetric Voltage Multiplied Non-Isolated Bidirectional DC-DC Converter with Soft-Switching and High Gain

Document Type : Research Article

Authors

1 Faculty of Electrical and Computer Engineering, University of Semnan, Semnan, Iran.

2 Department of Electrical Engineering, Khorasan Institute of Higher Education, Mashhad, Iran.

10.22075/mseee.2025.38925.1226

Abstract

This paper introduces a novel bidirectional DC-DC converter (BDC) that has a high gain of voltage, soft switching capability, and minimal ripple current on the low-voltage side (LVS). The suggested converter consists of an improved two-phase buck-boost converter, an Asymmetrical Voltage Multiplier cell, and a coupled inductor to provide a high-voltage gain converter. This paper offers a comprehensive theoretical examination of the converter. The converter elements, performance, and switching intervals provide suitable conditions for conducting the switches with zero voltage switching (ZVS) conditions. Due to the implementation of soft switching, the efficiency is increased, and no voltage spikes occur across the switches. The simulation was executed to design a converter and analyze its performance using the PSIM. The suggested converter offers an ultra-high voltage converting gain in both boost and buck operation modes. A laboratory prototype with a power of 300W is implemented to validate the performance of the converter. The presented experimental results outline a low-side voltage of 50V DC and a high-side voltage of 300V DC during the step-up operation.

Keywords

Main Subjects


[1]    M. Babaei, S. Sharifi, and M. Monfared, “A Z-source network integrated buck–boost PFC rectifier,” Int. J. Ind. Electron., Control Optim., vol. 2, no. 2, pp. 289–296, Oct. 2019, doi: 10.22111/ieco.2018.26296.1073.
[2]    K. Varesi and S. Padmanaban, “A transformer-less high-boosting common-grounded multi-phase DC–DC converter with continuous input-current favourable for low-power applications,” IET Renew. Power Gener., vol. 16, no. 3, pp. 594–604, Mar. 2022, doi: 10.1049/rpg2.12591.
[3]    S. O. Golpayegani, M. Jazaeri, and N. Eskandarian, “Frequency domain analysis of dual active bridge converter considering all power loss elements,” J. Model. Simul. Electr. Electron. Eng., vol. 3, no. 2, pp. 45–56, Aug. 2023, doi: 10.22075/mseee.2024.33381.1149.
[4]    M. Elmi, M. Banaei, and H. Afsharirad, “Study on a non-isolated high step-up SEPIC-based DC–DC converter with continuous input current for photovoltaic applications,” Int. J. Ind. Electron., Control Optim., vol. 3, no. 1, pp. 95–104, Mar. 2025, doi: 10.22111/ieco.2024.48587.1558.
[5]    W. Li, X. He, D. Xu, and B. Wu, “General derivation law of nonisolated high-step-up interleaved converters with built-in transformer,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1650–1661, Mar. 2012, doi: 10.1109/TIE.2011.2163375.
[6]    A. Rodriguez, A. Vazquez, D. G. Lamar, M. M. Hernando, and J. Sebastian, “Different purpose design strategies and techniques to improve the performance of a dual active bridge with phase-shift control,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 790–804, Feb. 2015, doi: 10.1109/TPEL.2014.2309853.
[7]    S. Zong, H. Luo, W. Li, Y. Deng, and X. He, “High-power bidirectional resonant DC–DC converter with equivalent switching frequency doubler,” IET Renew. Power Gener., vol. 10, no. 6, pp. 834–842, Jul. 2016, doi: 10.1049/iet-rpg.2015.0437.
[8]    J. Hiltunen, V. Vaisanen, R. Juntunen, and P. Silventoinen, “Variable-frequency phase shift modulation of a dual active bridge converter,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7138–7148, Dec. 2015, doi: 10.1109/TPEL.2015.2390913.
[9]    M. Packnezhad, P. Talebi, and H. Farzanehfard, “Fully soft-switched high step-up/down bidirectional buck/boost converter with reduced switch voltage stress,” IET Power Electron., vol. 16, no. 1, pp. 105–115, Jan. 2023, doi: 10.1049/pel2.12457.
[10]    M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC–DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143–9178, Dec. 2017, doi: 10.1109/TPEL.2017.2652318.
[11]    H. Wu, K. Sun, L. Chen, L. Zhu, and Y. Xing, “High step-up/step-down soft-switching bidirectional DC–DC converter with coupled-inductor and voltage matching control for energy storage systems,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2892–2903, May 2016, doi: 10.1109/TIE.2016.2517063.
[12]    K. Filsoof and P. W. Lehn, “A bidirectional modular multilevel DC–DC converter of triangular structure,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 54–64, Jan. 2015, doi: 10.1109/TPEL.2014.2307004.
[13]    C. Pineda, J. Pereda, F. Rojas, C. Cerda, X. Zhang, and A. J. Watson, “Asymmetrical triangular current mode (ATCM) for bidirectional high step ratio modular multilevel DC–DC converter,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 6906–6915, Jul. 2020, doi: 10.1109/TPEL.2019.2957951.
[14]    C. Pineda, J. Pereda, F. Rojas, G. Droguett, C. Burgos-Mellado, and A. J. Watson, “Optimal ZCS modulation for bidirectional high-step-ratio modular multilevel DC–DC converter,” IEEE Trans. Power Electron., vol. 36, no. 11, pp. 12540–12550, Nov. 2021, doi: 10.1109/TPEL.2021.3078235.
[15]    S. T. S. Lee, S. Y. R. Hui, W. C. Chow, and H. S. H. Chung, “Development of a switched-capacitor DC–DC converter with bidirectional power flow,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 47, no. 9, pp. 1383–1389, Sep. 2000, doi: 10.1109/81.883334.
[16]    H. Shayeghi, S. Pourjafar, and S. M. Hashemzadeh, “A switching capacitor-based multi-port bidirectional DC–DC converter,” IET Power Electron., vol. 14, no. 9, pp. 1622–1636, Sep. 2021, doi: 10.1049/pel2.12137.
[17]    R. Hu, J. Zeng, J. Liu, and K. W. E. Cheng, “A nonisolated bidirectional DC–DC converter with high voltage conversion ratio based on coupled inductor and switched capacitor,” IEEE Trans. Ind. Electron., vol. 68, no. 2, pp. 1155–1165, Feb. 2021, doi: 10.1109/TIE.2020.2967667.
[18]    S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: An overview,” IEEE Access, vol. 7, pp. 117997–118019, Aug. 2019, doi: 10.1109/ACCESS.2019.2937239.
[19]    H. Ardi, A. Ajami, F. Kardan, and S. N. Avilagh, “Analysis and implementation of a nonisolated bidirectional DC–DC converter with high voltage gain,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4878–4888, Aug. 2016, doi: 10.1109/TIE.2016.2552139.
[20]    H. S. Lee and J. J. Yun, “High-efficiency bidirectional buck–boost converter for photovoltaic and energy storage systems in a smart grid,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4316–4328, May 2019, doi: 10.1109/TPEL.2018.2860059.
[21]    N. A. Dung, H.-J. Chiu, Y.-C. Liu, and P. J. Huang, “Analysis and implementation of a high voltage gain 1 MHz bidirectional DC–DC converter,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1415–1424, Feb. 2020, doi: 10.1109/TIE.2019.2905810.
[22]    V. V. S. K. Bhajana, P. Drabek, M. Jara, M. Popuri, A. Iqbal, and C. B. B., “Investigation of a bidirectional DC–DC converter with zero-voltage switching operation for battery interfaces,” IET Power Electron., vol. 14, no. 3, pp. 614–625, Mar. 2021, doi: 10.1049/pel2.12048.
[23]    H. Liu, L. Wang, Y. Ji, and F. Li, “A novel reversal coupled inductor high-conversion-ratio bidirectional DC–DC converter,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4968–4979, Jun. 2018, doi: 10.1109/TPEL.2017.2725358.
[24]    H. Bahrami, S. Farhangi, H. Iman-Eini, and E. Adib, “Analysis, design, and implementation of DC–DC IBBC–DAHB converter with voltage matching to improve efficiency,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5209–5219, Jul. 2019, doi: 10.1109/TIE.2018.2868260.
[25]    Z. Hosseinzadeh, N. Molavi, and H. Farzanehfard, “Soft-switching high step-up/down bidirectional DC–DC converter,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4379–4386, Jun. 2019, doi: 10.1109/TIE.2018.2863216.
[26]    M. R. Mohammadi, A. Amoorezaei, S. A. Khajehoddin, and K. Moez, “A high step-up/step-down LVS-parallel HVS-series ZVS bidirectional converter with coupled inductors,” IEEE Trans. Power Electron., vol. 37, no. 2, pp. 1945–1961, Feb. 2022, doi: 10.1109/TPEL.2021.3106668.
[27]    R. Hu, H. Qi, Z. Yan, W. Wu, J. Zeng, and J. Liu, “A coupled-inductor-based bidirectional DC–DC converter with high voltage conversion ratio and sensorless current balance,” IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2450–2460, Mar. 2023, doi: 10.1109/TIE.2022.3172770.
[28]    M. Madadi, M. Jazaeri, and H. Molla-Ahmadian, “Design and implementation of an ultra-high gain, soft-switching, bidirectional DC–DC converter with high efficiency,” e-Prime – Adv. Electr. Eng., Electron. Energy, vol. 12, pp. 101002, Jun. 2025, doi: 10.1016/j.prime.2025.101002.
[29]    E. Babaei, Z. Saadatizadeh, and C. Cecati, “High step-up high step-down bidirectional DC–DC converter,” IET Power Electron., vol. 10, no. 12, pp. 1556–1571, Dec. 2017, doi: 10.1049/iet-pel.2016.0977.
[30]    M. Babaei and M. Monfared, “High step-down bridgeless SEPIC/Cuk PFC rectifiers with improved efficiency and reduced current stress,” IEEE Trans. Ind. Electron., vol. 69, no. 10, pp. 9984–9991, Oct. 2022, doi: 10.1109/TIE.2022.3159954.
[31]    D. Graovac and M. Pürschel, “MOSFET power losses calculation using the data-sheet parameters,” Infineon Technologies AG, Munich, Germany, Appl. Note AN-201, Jan. 2006.
[32]    A. H. Masoumi, S. Sharifi, M. Monfared, and S. Karbasforooshan, “Γ-source magnetic integrated filter for single-phase grid-tied voltage source converters,” IEEE Trans. Ind. Electron., early access, 2019, doi: 10.1109/TIE.2019.2934031.
[33]    R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, 3rd ed. Cham, Switzerland: Springer, 2020, doi: 10.1007/978-3-030-43881-4.