[1] Dehghan, S. M. M., Farmani, M., & Moradi, H. (2012,December). Aerial localization of an RF source in NLOS condition. In Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on (pp. 1146-1151). IEEE.
[2] Morbidi, F., & Mariottini, G. L. (2013). Active target tracking and cooperative localization for teams of aerial vehicles. Control Systems Technology, IEEE Transactions on, 21(5), 1694-1707.
[3] Tassetto, D., Fazli, E. H., & Werner, M. (2011). A novel hybrid algorithm for passive localization of victims in emergency situations. International Journal of Satellite Communications and Networking, 29(5), 461-478.
[4] Zorn, S., Rose, R., Goetz, A., & Weigel, R. (2010, September). A novel technique for mobile phone localization for search and rescue applications. In Indoor Positioning and Indoor Navigation (IPIN), 2010 International Conference on (pp. 1-4). IEEE.
[5] Coleri Ergen, S., Tetikol, H. S., Kontik, M., Sevlian, R., Rajagopal, R., & Varaiya, P. (2014). RSSI- fingerprinting-based mobile phone localization with route constraints. Vehicular Technology, IEEE Transactions on, 63(1), 423-428.
[6] Zhang, K. S., Xu, Y. M., Yang, W., & Zhou, Q. (2012, July). Improved Localization Algorithm Based on Proportion of Differential RSSI. In Applied Mechanics and Materials (Vol. 192, pp. 401-405). Trans Tech Publications.
[7] Dehghan, S. M. M., & Moradi, H. (2013, February). A multi-step Gaussian filtering approach to reduce the effect of non-Gaussian distribution in aerial localization of an RF source in NLOS condition. In Robotics and Mechatronics (ICRoM), 2013 First RSI/ISM International Conference on (pp. 43-48). IEEE.
[8] Wang, Z., Luo, J. A., & Zhang, X. P. (2012). A novel location-penalized maximum likelihood estimator for bearing-only target localization. Signal Processing, IEEE Transactions on, 60(12), 6166-6181.
[9] Shao, H. J., Zhang, X. P., & Wang, Z. (2014). Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables. Signal Processing, IEEE Transactions on, 62(10), 2580-2594.
[10] Qiao, T., & Liu, H. (2013). An improved method of moments estimator for TOA based localization. Communications Letters, IEEE, 17(7), 1321-1324.
[11] Zhu, S., & Ding, Z. (2010). Joint synchronization and localization using TOAs: A linearization based WLS solution. Selected Areas in Communications, IEEE Journal on, 28(7), 1017-1025.
[12] Chan, F. K., So, H. C., Zheng, J., & Lui, K. W. (2008). Best linear unbiased estimator approach for time-of-arrival based localisation. Signal Processing, IET, 2(2), 156-162.
[13] Wang, Y., & Ho, K. C. (2013). TDOA source localization in the presence of synchronization clock bias and sensor position errors. Signal Processing, IEEE Transactions on, 61(18), 4532-4544.
[14] Carevic, D. (2007). Automatic estimation of multiple target positions and velocities using passive TDOA measurements of transients. Signal Processing, IEEE Transactions on, 55(2), 424-436.
[15] Sahu, P. K., Wu, E. H. K., & Sahoo, J. (2013). DuRT: dual RSSI trend based localization for wireless sensor networks. Sensors Journal, IEEE, 13(8), 3115-3123.
[16] Zhu, Y., Zhang, B., Yu, F., & Ning, S. (2009, April). A RSSI based localization algorithm using a mobile anchor node for wireless sensor networks. In Computational Sciences and Optimization, 2009. CSO 2009. International Joint Conference on (Vol. 1,pp. 123-126). IEEE.
[17] Pellegrini, R. M., Persia, S., Volponi, D., & Marcone, G. (2011, February). RF propagation analysis for ZigBee Sensor Network using RSSI measurements. In Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), 2011 2nd International Conference on (pp. 1-5). IEEE.
[18] Ibrahim, M., & Youssef, M. (2010, December). Cellsense: A probabilistic rssi-based gsm positioning system. In Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE (pp. 1-5). IEEE.
[19] Lin, D. B., & Juang, R. T. (2005). Mobile location estimation based on differences of signal attenuations for GSM systems. Vehicular Technology, IEEE Transactions on, 54(4), 1447-1454.
[20] Dehghan, S. M. M., Tavakkoli, M. S., & Moradi, H. (2013, February). Path planning for localization of an RF source by multiple UAVs on the Crammer-Rao Lower Bound. In Robotics and Mechatronics (ICRoM), 2013 First RSI/ISM International Conference on (pp.68-73). IEEE.
[21] Doğançay, K., Hmam, H., Drake, S. P., & Finn, A. (2009, December). Centralized path planning for unmanned aerial vehicles with a heterogeneous mix of sensors. In Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2009 5th International Conference on (pp. 91-96). IEEE.
[22] Doğançay, K. (2012). UAV path planning for passive emitter localization.Aerospace and Electronic Systems, IEEE Transactions on, 48(2), 1150-1166.
[23] Dogancay, K. (2007, September). Optimized path planning for UAVs with AOA/scan based sensors. In Signal Processing Conference, 2007 15th European (pp. 1935-1939). IEEE.
[24] Bishop, A. N., Fidan, B., Anderson, B. D., Doğançay, K., & Pathirana, P. N. (2010). Optimality analysis of sensor-target localization geometries.Automatica, 46(3), 479-492.
[25] Bishop, A. N., & Jensfelt, P. (2009, December). An optimality analysis of sensor-target geometries for signal strength based localization. In Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2009 5th International Conference on (pp. 127-132). IEEE.
[26] Jain, R. (2007). Channel Models a Tutorial. Sponsored in part by WiMAX Forum.
[27] Vaghefi, R. M., Gholami, M. R., Buehrer, R. M., & Strom, E. G. (2013). Cooperative received signal strength-based sensor localization with unknown transmit powers. Signal Processing, IEEE Transactions on, 61(6), 1389-1403.