1] Yavuz, L., Önen, A., Muyeen, S. M., & Kamwa, I. (2019).
Transformation of microgrid to virtual power plant–a
comprehensive review. IET Generation, Transmission &
Distribution, 13(11), 1994-2005.
[2] Nosratabadi, S. M., Hooshmand, R. A., & Gholipour, E. (2017). A
comprehensive review on microgrid and virtual power plant
concepts employed for distributed energy resources scheduling in
power systems. Renewable and Sustainable Energy Reviews, 67,
341-363.
[3] Nguyen, H. T., Le, L. B., & Wang, Z. (2018). A bidding strategy for
virtual power plants with the intraday demand response exchange
market using the stochastic programming. IEEE Transactions on
Industry Applications, 54(4), 3044-3055.
[4] Kabalci, Y. (2016). A survey on smart metering and smart grid
communication. Renewable and Sustainable Energy Reviews, 57,
302-318.
[5] Vanhoudt, D., Claessens, B. J., Salenbien, R., & Desmedt, J. (2018).
An active control strategy for district heating networks and the effect
of different thermal energy storage configurations. Energy and
Buildings, 158, 1317-1327.
[6] Kardakos, E. G., Simoglou, C. K., & Bakirtzis, A. G. (2015).
Optimal offering strategy of a virtual power plant: A stochastic bi-
level approach. IEEE Transactions on Smart Grid, 7(2), 794-806.
[7] Braun, M. (2007). Technological control capabilities of DER to
provide future ancillary services. International journal of distributed
energy resources, 3(3), 191-206.
[8] Lombardi, P., Stötzer, M., Styczynski, Z., & Orths, A. (2011, July).
Multi-criteria optimization of an energy storage system within a
Virtual Power Plant architecture. In 2011 IEEE Power and Energy
Society General Meeting (pp. 1-6). IEEE.
[9] Li, H., Tan, Z., Chen, H., & Guo, H. (2018). Integrated heat and
power dispatch model for wind-CHP system with solid heat storage
device based on robust stochastic theory. Wuhan University Journal
of Natural Sciences, 23(1), 31-42.
[10] Ramsay, C. and Aunedi, M., “Characterisation of LSVPPs”, Fenix
project, Del. D1.4.1. [Online]. Available:
http://fenix.iwes.fraunhofer. de/html/documents.htm
[11] Vanhoudt, D., Claessens, B. J., Salenbien, R., & Desmedt, J. (2018).
An active control strategy for district heating networks and the effect
of different thermal energy storage configurations. Energy and
Buildings, 158, 1317-1327.
[12] Zdrilić, M., Pandžić, H., & Kuzle, I. (2011, May). The mixed-
integer linear optimization model of virtual power plant operation.
In 2011 8th International Conference on the European Energy
Market (EEM) (pp. 467-471). IEEE.
[13] Zamani, A. G., Zakariazadeh, A., Jadid, S., & Kazemi, A. (2016).
Stochastic operational scheduling of distributed energy resources in
a large scale virtual power plant. International Journal of Electrical
Power & Energy Systems, 82, 608-620.
[14] Kuzle, I., Zdrilić, M., & Pandžić, H. (2011, May). Virtual power
plant dispatch optimization using linear programming. In 2011 10th
International Conference on Environment and Electrical
Engineering (pp. 1-4). IEEE.
[15] Ruiz, N., Cobelo, I., & Oyarzabal, J. (2009). A direct load control
model for virtual power plant management. IEEE Transactions on
Power Systems, 24(2), 959-966.
[16] Caldon, R., Patria, A. R., & Turri, R. (2004, September).
Optimisation algorithm for a virtual power plant operation. In 39th
International Universities Power Engineering Conference, 2004.
UPEC 2004. (Vol. 3, pp. 1058-1062). IEEE.
[17] Maanavi, M., Najafi, A., Godina, R., Mahmoudian, M., & MG
Rodrigues, E. (2019). Energy Management of Virtual Power Plant
Considering Distributed Generation Sizing and Pricing. Applied
Sciences, 9(14), 2817.
[18] Okpako, O., Rajamani, H. S., Pillai, P., Anuebunwa, U., & Swarup,
K. S. (2017, September). A Comparative Assessment of Embedded
Energy Storage and Electric Vehicle Integration in a Community
Virtual Power Plant. In International Conference on Wireless and
Satellite Systems (pp. 127-141). Springer, Cham.
[19] Wang, M., Mu, Y., Jia, H., Wu, J., Yu, X., & Qi, Y. (2017). Active
power regulation for large-scale wind farms through an efficient
power plant model of electric vehicles. Applied Energy, 185, 1673-
1683.
[20] Ju, L., Li, H., Zhao, J., Chen, K., Tan, Q., & Tan, Z. (2016). Multi-
objective stochastic scheduling optimization model for connecting a
virtual power plant to wind-photovoltaic-electric vehicles
considering uncertainties and demand response. Energy Conversion
and Management, 128, 160-177.
[21] Rostami, M. A., & Raoofat, M. (2016). Optimal operating strategy
of virtual power plant considering plug‐in hybrid electric vehicles
load. International Transactions on Electrical Energy
Systems, 26(2), 236-252.
[22] Kahlen, M., & Ketter, W. (2015, February). Aggregating electric
cars to sustainable virtual power plants: The value of flexibility in
future electricity markets. In Twenty-Ninth AAAI Conference on
Artificial Intelligence.
[23] Giuntoli, M., & Poli, D. (2013). Optimized thermal and electrical
scheduling of a large scale virtual power plant in the presence of
energy storages. IEEE Transactions on Smart Grid, 4(2), 942-955.
[24] “World Wind Energy Association- Press Release”,
http://www.wwindea.org,Feb.2009.
[25] Barsali, S., Ceraolo, M., Giglioli, R., & Poli, D. (2003, June).
Aggregation and management of the demand in a deregulated
electricity market. In 2003 IEEE Bologna Power Tech Conference
Proceedings, (Vol. 4, pp. 4-pp). IEEE.
[26] Barsali, S., Bechini, A., Giglioli, R., & Poli, D. (2012, September).
Storage in electrified transport systems. In 2012 IEEE International
Energy Conference and Exhibition (ENERGYCON) (pp. 1003-
1008). IEEE.
[27] Qian, K., Zhou, C., Allan, M., & Yuan, Y. (2010). Modeling of load
demand due to EV battery charging in distribution systems. IEEE
transactions on power systems, 26(2), 802-810.
[28] Li, G., & Zhang, X. P. (2012). Modeling of plug-in hybrid electric
vehicle charging demand in probabilistic power flow
calculations. IEEE Transactions on Smart Grid, 3(1), 492-499.
[29] Rezaee, S., Farjah, E., & Khorramdel, B. (2013). Probabilistic
analysis of plug-in electric vehicles impact on electrical grid through
homes and parking lots. IEEE Transactions on Sustainable
Energy, 4(4), 1024-1033.
[30] Dulău, L. I., Abrudean, M., & Bică, D. (2014, September).
Distributed generation and virtual power plants. In 2014 49th
International Universities Power Engineering Conference
(UPEC) (pp. 1-5). IEEE.
[31] Saber, A. Y., & Venayagamoorthy, G. K. (2011). Resource
scheduling under uncertainty in a smart grid with renewables and
plug-in vehicles. IEEE systems journal, 6(1), 103-109.
[32] Vanderbei, R. J. (2020). Linear programming: foundations and
extensions (Vol. 285). Springer Nature.
[33] Wong, J. Y. (2014). Testing the Nonlinear Integer Programming
Solver Here with Generalized Euler Bricks.
[34] Alemany, J., Magnago, F., Moitre, D., & Pinto, H. (2014).
Symmetry issues in mixed integer programming based Unit
Commitment. International Journal of Electrical Power & Energy
Systems, 54, 86-90.
[35] Gil, E., Aravena, I., & Cárdenas, R. (2014). Generation capacity
expansion planning under hydro uncertainty using stochastic mixed
integer programming and scenario reduction. IEEE Transactions on
Power Systems, 30(4), 1838-1847.
[36] Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm
robotics search & rescue: A novel artificial intelligence-inspired
optimization approach. Applied Soft Computing, 57, 708-726.
[37] Italy4th Conto Energia (Summary), May 2011, European
Photovoltaic Industry Association.
[38] ItalyAnnual Report, Aug. 2011, International Energy Agency Wind.
[39] Kariuki, K. K., & Allan, R. N. (1996). Evaluation of reliability
worth and value of lost load. IEE proceedings-Generation,
transmission and distribution, 143(2), 171-180.
[40] Li, W. (2006). Expected Energy Not Served (EENS) Study for
Vancouver Island Transmission Reinforcement Project. Report-
BCTC.