High-Efficiency Slot Array Antenna Fed by a Microstrip Line to ESIW Transition for X-band Applications

Document Type : Research Paper

Authors

1 Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.

2 Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC, Canada.

Abstract

In this manuscript, a planar slot array antenna with an innovative method is designed at a 10 GHz centrecentre frequency. The designed antenna is manufactured on PCB. In this antenna, the input power enters the microstrip line, then this power enters the empty SIW (ESIW) structure via transition and then this structure fed the eight radiation slots on the antenna. The geometry of the ESIW structure is designed as a tapered substrate, which eliminates the interference effects of higher-order modes with the dominant mode, thus providing extreme antenna radiation power. The techniques used in feeding the radiation elements have acceptable effects on the impedance bandwidth and radiation efficiency. The designed antenna feeding bandwidth is 2 GHz, also the antenna fractional bandwidth is 7.5%. All simulations were performed using CST Studio Suite software. The antenna radiation gains and efficiency are 13.8 dB and about 92% at 10 GHz, respectively. The configured antenna dimension is 222.75 × 40 × 4.4 mm3.

Keywords

Main Subjects


  •  

    • Guha, D, Yahia M.M. Antar, YMM.: Microstrip and printed antennas: New trends, techniques and applications, John Wiley and Sons, First Edition, 2011.
    • Fakharian, MM, Rezaei, P.: Very compact palmate leaf-shaped CPW-fed monopole antenna for UWB ap Microw. Opt. Technol. Lett. 2014;56(7):1612-1616.
    • Bhatti, R.A, Park, B.Y, et al.: Design of a planar slotted waveguide array antenna for X-band radar applications. J.­ Electromag. Eng. Sci. 2011;11: 97-104.
    • Fakharian, MM.: A low-profile compact UWB antenna array for sub-6 GHz MIMO applications in 5G metal-frame smartphones. International Journal of RF and Microwave Computer-Aided Engineering. 2022; 32 (10): e23320.
    • Khani, S, Vahab AL-Din Makki, S, et al.: Adjustable compact dual‐band microstrip bandpass filter using T‐shaped resonators. Microw. Opt. Technol. Lett. 2017;59(12):2970-2975.
    • Mohammadi, B, Valizade Shahmirzadi, A, et al.: Design of a compact dual-band-notch ultra-wideband bandpass filter based on wave cancellation method. IET Microwaves, Antennas and Propagation, 2015; 9(1):1-9.
    • Khani, S, Hayati, M. Compact microstrip lowpass filter with wide stopband and sharp roll-off. Microwave Journal. 2017; 60(11):86-92.
    • Fakharian, MM.: RF energy harvesting using high impedance asymmetric antenna array without impedance matching network. Radio Sci. 2021;56(3):1-10.
    • Shokouhi Shoormasti, A, Abbasi, A, Orouji, AA.:Using energy band engineering to improve heterojunction solar cells efficiency. Optik. 2020; 218:165243.
    • Shirazi, S, Orouji, AA. Abbasi, A, Jafari SMH.: Improvement of Cd-free CIGS solar cell efficiency using triple silicon dioxide boxes as rear-passivation. Journal of Materials Science: Materials in Electronics. 2024; 35(6):1-12.
    • Fakharian, MM.: A wideband fractal planar monopole antenna with a thin slot on radiating stub for radio frequency energy harvesting applications. International Journal of Engineering. 2020; 33(11):2181-2187.
    • Kiani, S, Rezaei, P, Fakhr, M.: Dual-frequency microwave resonant sensor to detect non-invasive glucose level changes through the fingertip. IEEE Trans. Instrumentation and Measurement. 2021; 70:6004608.
    • Jalalvand, AR, Rashidi, Z, et al.: Sensitive and selective simultaneous biosensing of nandrolone and testosterone as two anabolic steroids by a novel biosensor assisted by second-order calibration. Steroids. 2023; 189:109138.
    • Khani, S, Hayati, M.: An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlatt. and Microstruct. 2021; 156:106970.
    • Kiani, S, Rezaei, P, Navaei, M, Abrishamian, MS.: Microwave sensor for detection of solid material permittivity in single/multilayer samples with high quality factor. IEEE Sensors Journal. 2018; 18(24): 9971-9977.
    • Alipour, AH, Khani, S, Ashoorirad, M, Baghbani, R.: Trapped multimodal resonance in magnetic field enhancement and sensitive THz plasmon sensor for toxic materials accusation. IEEE Sensors Journal. 2023; 23(13):14057-14066.
    • Nimehvari Varcheh, H, Rezaei, P.: Low phase-noise X-band oscillator based on elliptic filter and branchline coupler. IET Microwaves, Antennas and Propagation. 2019; 13(7):888-891.
    • Yang, Z, Luo, B, et al.: X-band low phase noise loop oscillator with differential outputs. Electron. Lett. 2015; 51(6):1005-1007.
    • Varcheh, HN., Rezaei, P, Kiani, S.: A modified Jerusalem microstrip filter and its complementary for low phase noise X-band oscillator. International Journal of Microwave and Wireless Technologies. 2023; 15(10): 1707-1716.
    • Karami, F, Rezaei, P, et al.: Efficient transition hybrid two-layer feed network: Polarization diversity in a satellite transceiver array antenna. IEEE Antennas Propag. Mag. 2021; 63(1):51-60.
    • Le Sage, G.P.: 3D printed waveguide slot array antennas. IEEE Access, vol. 4 (2016), 1258-1265.
    • Stern, G, Elliott, R.: Resonant length of longitudinal slots and validity of circuit representation: Theory and experiment. IEEE Trans. Antennas Propag., vol. 33 (1985), 1264-1271.
    • Tyagi, Y, Mevada, P, et al.: High‐efficiency broadband slotted waveguide array antenna. IET Microwaves, Antennas and Propagation. 2017; 11: 1401-1408.
    • Haghparast, A.H, Rezaei, P.: High performance H-plane horn antenna using groove gap waveguide technology. AEU Int. J. Electron. Commun., 163 (2023) 154620.
    • Soleiman Meiguni, J, Ghobadi Rad, A.: WLAN substrate integrated waveguide filter with novel negative coupling structure. Modeling and Simulation on Electrical and Electronics Engineering (MSEEE). 2015; 1(2):15-18.
    • Deslandes, D, Wu, K.:Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave Wireless Component Letters, 2001; 11:68-70.
    • Weng, Q, Lin, Q, Wu, H. The propagation characteristics of rectangular waveguides filled with inhomogeneous double-negative dielectrics using a semianalytical method. International Journal of Numerical Modelling. 2021; 34: e2860.
    • Mohammadi, B, Valizade, A, et al.: New design of compact dual band-notch ultra-wideband bandpass filter based on coupled wave canceller inverted T-shaped stubs. IET Microwaves, Antennas and Propagation. 2015; 9(1):64-72.
    • Nasrabadi, E, Rezaei, P. A novel design of reconfigurable monopole antenna with switchable triple band-rejection for UWB applications. International Journal of Microwave and Wireless Technologies, vol. 8, (2016), 1223-1229.
    • Khani, S, Danaie, M, et al.: Compact ultra-wide upper stopband microstrip dual-band BPF using tapered and octagonal loop resonators. Frequenz, vol. 74 (2020), 61-71.
    • Kiani, S, Rezaei, P, Navaei, M.: Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection. Measurement. 2020; 160:107805.
    • Kiani, N, Afsahi, M, et al.: Implementation of a fourth-order compact quasi-elliptic substrate integrated waveguide filter in C-band. Modeling and Simulation on Electrical and Electronics Engineering (MSEEE). 2022; 2(2):23-27.
    • Karami, F, Boutayeb, H, et al.: Multifunctional switched-beam antenna located on solar cell for vehicular to satellite communication. IEEE Trans. Vehicular Technol. 2024; 73(3): 3457-3468.
    • Kiani, S, Rezaei, P, et al.: Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. Lett., vol. 54, (2018), 667-668.
    • Hirokawa, J, Ando, M.: Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays. IEEE Trans. Antennas Propag., vol. 48 (2000), 1742-1745.
    • Kiani, S, Rezaei, P.: Microwave substrate integrated waveguide resonator sensor for non-invasive monitoring of blood glucose concentration: Low cost and painless tool for diabetics. Measur. 2023; 219:113232.
    • Fakharian, MM.: A dual circular and linear polarized rectenna for RF energy harvesting at 0.9 and 1.8 GHz GSM bands. 2021; 41(8):545-556.
    • Xiao, S, Yang, L.: T-type folded SIW-based leaky-wave antennas with wide scanning angle and low cross-polarization. International Journal of Microwave and Wireless Technologies, vol. 14 (2022), 949-954.
    • AmneElahi, A, Rezaei, P, et al.: Analysis and design of a stacked PCBs-based quasi-helix antenna. IEEE Trans. Antennas Propag., vol. 70 (2022), 12253-12257.
    • Khatami, S.A, Meiguni, et al.: Compact via-coupling fed monopulse antenna with orthogonal tracking capability in radiation pattern. IEEE Antennas Wirel. Propag. , vol. 19 (2020), 1443-1446.
    • Li, L, Yan, J.B.: A low-cost and efficient microstrip-fed air-substrate-integrated waveguide slot array. Electronics, vol. 10 (2021), 338.
    • Al Khanjar, K, Djerafi, T.: Partially dielectric-filled empty substrate integrated waveguide design for millimeter-wave applications. Progress in Electromagnetics Research C., vol. 87 (2018), 135-146.
    • Wang, Y, Yang, X.X, et al.: Study on millimeter-wave SIW rectenna and arrays with high conversion efficiency. IEEE Trans. Antennas Propag., vol. 69 (2021), 5503-5511.
    • Abdi Diman, A, Karami, F, et al.: Efficient SIW-feed network suppressing mutual coupling of slot antenna array. IEEE Trans. Antennas Propag., vol. 69 (2021), 6058-6063.
    • Freeman, J.C.: Fundamentals of microwave transmission lines. New York: Wiley, 1996.
    • Mateo, J, Torres A.M, et al.: Highly efficient and well-matched empty substrate integrated waveguide H-plane horn antenna. IEEE Antennas Wirel. Propag. Lett., vol. 15 (2016), 1510-1513.
    • Khan, Z.U, Jilani, S.F, et al. Empty substrate integrated waveguide-fed MMW aperture-coupled patch antenna for 5G applications. EuCAP., arXiv e-prints (2018), arXiv-1809.
    • Nigam, P, Muduli, A, et al.: SIW based cavity backed self-quadplexing slot antenna. J. Microw. Optoelectron. Electromag. Appl., vol. 20 (2021), 490-503.
    • Xu, J, Chen, Z.N, Qing, X.: CPW center-fed single-layer SIW slot antenna array for automotive radars. IEEE Trans. Antennas Propag., vol. 62 (2014), 4528-4536.
    • Yan, L, Hong, W, et al.: Simulation and experiment on SIW slot array antennas. IEEE Microw. Wireless Compon. Lett., vol. 14 (2004), 446-448.
    • Parment, F, Ghiotto, A, et al.: Millimetre‐wave air‐filled substrate integrated waveguide slot array antenna. Electron. Lett., vol. 53 (2017), 704-706.