Tunneling FET With Embedded P+ Pocket as a High Sensitivity Biosensor for Label-Free Detection

Document Type : Research Paper

Authors

1 Electrical Engineering Department, Energy Faculty, Kermanshah University of Technology, Kermanshah, Iran.

2 Electrical Engineering Department, Engineering Faculty, Imam Khomeini International University, Qazvin, Iran.

Abstract

In this paper, an efficient structure for tunneling field effect transistors (TFETs) with P+ pocket is proposed for label-free detection of biomolecules. This structure includes a double gate TFET with P+P-N+ doping profile for source, channel, and drain regions and an embedded P+ pocket in the channel to control the band-to-band tunneling (BTBT). The biomolecules are captured in the cavity region and affect the band bending. The capacitive behavior of biomolecules causes further band bending where their dielectric constant is increased. The presence of P+ pocket at the source side of TFET causes more changes in the capacitive behavior and in current and consequently increases the sensitivity. For the detection of the biomolecule with K=4, the proposed structure shows more than 60% improvement in sensitivity. It enhances the sensitivity for all investigated dielectric constants, where the enhancement is more considerable for biomolecules with higher dielectric constants. For more evaluation, the biosensor is assessed in different widths and impurity densities of P+ region. It demonstrates that the proposed structure can efficiently tolerate the variations in physical dimension and impurity concentration while it maintains higher sensitivities.
 

Keywords

Main Subjects


  1. Sarkar and K. Banerjee, “Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors,” Appl. Phys. Lett., vol. 100, no. 14, p. 143108, 2012.
  2. Sarkar, H. Gossner, W. Hansch, and K. Banerjee, “Tunnel-field-effect transistor-based gas-sensor: Introducing gas detection with a quantum mechanical transducer,” Appl. Phys. Lett., vol. 102, no. 2, p. 023110, 2013.
  3. Narang, M. Saxena, and M. Gupta, “Comparative analysis of dielectric-modulated FET and TFET-based biosensor,” IEEE Trans. Nanotechnol., vol. 14, no. 3, pp. 427–435, May 2015.
  4. Narang, K. V. Sasidhar Reddy, M. Saxena, R. S. Gupta, and M. Gupta, "A dielectric-modulated tunnel-FET-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis." IEEE trans. Electron devices, vol.. 59, no. 10, pp. 2809-2817, 2012.
  5. Sarkar and K. Banerjee, “Fundamental limitations of conventional FET biosensors: Quantum-mechanical-tunneling to the rescue,” in Proc. IEEE Device Res. Conf., pp. 83–84, Jun. 2012.
  6. Singh, S. Pandey, K. Nigam, D. Sharma, D. S. Yadav, and P. Kondekar, “A charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection,” IEEE Trans. Electron Devices, vol. 67, no. 1, pp. 271–278, Jan. 2017.
  7. Reddy, N. Nagendra, and D. K. Panda, "A comprehensive review on tunnel field-effect transistor (TFET) based biosensors: recent advances and prospects on device structure and sensitivity." Silicon13, no. 9, pp. 3085-3100, 2021.
  8. Narang, K. V. S. Reddy, M. Saxena, R. S. Gupta, and M. Gupta, “A dielectric-modulated tunnel-FET-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis,” IEEE Trans. Electron Devices, vol.. 59, no. 10, pp. 2809–2817, Oct. 2012.
  9. Kanungo, S. Chattopadhyay, P. S. Gupta, K. Sinha, and H. Rahaman, “Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors,” IEEE Trans. Electron Devices, vol. 63, no. 6, pp. 2589–2596, Jun. 2016.
  10. Bhattacharyya, Ch. Manash, and D. Debashis, "Performance assessment of new dual-pocket vertical heterostructure tunnel FET-based biosensor considering steric hindrance issue", IEEE Transactions on Electron Devices66, no. 9, pp. 3988-3993, 2019.
  11. Verma, S. Tirkey, S. Yadav, D. Sharma, D. Yadav, “Performance assessment of a novel vertical dielectrically modulated TFET-based biosensor”, IEEE Transactions on Electron Devices, vol. 64, no. 9, pp. 3841-3848, 2017.
  12. Reddy, D. Panda, “A comprehensive review on tunnel field-effect transistor (TFET) based biosensors: recent advances and prospects on device structure and sensitivity”, Silicon, vol. 13, no. 9, pp. 3085-3100, 2021.
  13. Vimala, L. Krishna, S. Sharma, “TFET Biosensor simulation and analysis for various biomolecules”, Silicon, vol. 14, no. 13, pp. 7933-7938, 2022.
  14. Kumar, Y. Singh, B. Singh, P. K. Tiwari, “Simulation study of dielectric modulated dual channel trench gate TFET-based biosensor”, IEEE Sensors Journal, vol. 20, no 21, pp. 12565-12573, 2020.
  15. Azadi, S. Mohammadi, P. Keshavarzi, “Ion-Sensitive Field-Effect Transistor-Based Biosensor for PSA Antigen Concentration Measurement Using Microfluidic System”, Journal of modeling and simulation in electrical and electronics. vol. 1, no. 4, pp. 33-36, 2022.
  16. Theja, M. Panchore, “Performance investigation of GaSb/Si heterojunction-based gate underlap and overlap vertical TFET biosensor”, IEEE Transactions on NanoBioscience, vol. 22, no. 2, pp. 284-291, 2022.
  17. Vanlalawmpuia, B. Bhowmick, “Analysis of hetero-stacked source TFET and heterostructure vertical TFET as dielectrically modulated label-free biosensors”, IEEE Sensors Journal, vol. 22, no. 1, pp. 939-947, 2021.
  18. Saha, Y. Hirpara, S. Hoque, “Sensitivity analysis on dielectric modulated Ge-source DMDG TFET based label-free biosensor”, IEEE Transactions on Nanotechnology, vol. 20, pp. 552-560, 2021.
  19. Gedam, B. Acharya, G. P. Mishra, “Design and performance assessment of dielectrically modulated nanotube TFET biosensor”, IEEE Sensors Journal, vol. 21. no. 15, pp.16761-16769, 2019.
  20. Das, B. Kumar, P. Bundela, K. Singh, Performance assessment of Si based dual metal double gate vertical TFET biosensor, Micro and Nanostructures, vol.. 191, 2024.
  21. Baruah, S. Baishya, “Numerical assessment of dielectrically-modulated short-double-gate PNPN TFET-based label-free biosensor”, Microelectronics Journal, vol. 133, p. 105717, 2023.
  22. Bitra, G. Komanapalli, “A comprehensive performance investigation on junction-less tfet (jl-tfet) based biosensor: Device structure and sensitivity”, Transactions on Electrical and Electronic Materials, vol. 24, no. 5, pp. 365-372, 2023.
  23. Panda, S. Dash, “A single gate Si1− xGex dopingless TFET functioned as an effective label-free biosensor”, Physica Scripta, vol. 98, no. 9, p. 095910, 2023.
  24. H. Khan, M. F. Akbar, P. Kaur, G. Wadhwa, “Modeling, simulation investigation of heterojunction (GaSb/Si) vertical TFET-based dielectric modulated biosensor structure”, Micro and Nanostructures, vol. 179, p. 207565, 2023.
  25. Tura, Z. Zhang, P. Liu, Y.-H. Xie, and J. C. S. Woo, “Vertical silicon p-n-p-n tunnel nMOSFET with MBE-grown tunneling junction,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1907–1913, Jul. 2011.
  26. K. Anvarifard, A. A. Orouji, “Design of a novel high-sensitive SOI-Junctionless BioFET overcoming sensitivity degradation problems”, Scientific Reports, 14(1), 18395. 2024.
  27. C. Cherik, S. Mohammadi, S., A. A. Orouji, “Switching performance enhancement in nanotube double-gate tunneling field-effect transistor with germanium source regions.”, IEEE Transactions on Electron Devices, 69(1), 364-369, 2021.
  28. Ramezani, A. A. Orouji, “A new DG nanoscale TFET based on MOSFETs by using source gate electrode: 2D simulation and an analytical potential model”, Journal of the Korean Physical Society71, 215-221, 2017.
  29. Shahnazarisani, A. A. Orouji, “A novel SOI MESFET by implanted N layer (INL-SOI) for high-performance application”, Modeling and Simulation in Electrical and Electronics Engineering, 1(1), 7-12, 2021.
  30. Atlas, device simulator, Atlas user’s manual In: Silvaco international software, Santa Clara, 2015.
  31. Djamai, A. Lounis, E. L. Gkougkousis, M. Chahdi, D. Hohov, S. Oussalah, T. Rashid, “Performance of n-on-p planar pixel sensors with active edges at high-luminosity environment”, The European Physical Journal Plus, vol. 135, no. 1, p. 101, 2020.
  32. Khanjar, A. Naderi, “DC and RF characteristics improvement in SOI-MESFETs by inserting additional SiO2 layers and symmetric Si wells”, Materials Science and Engineering: B, vol. 272, p. 115386, 2021.
  33. Paliwal, M. Tomar, V. Gupta, “Complex dielectric constant of various biomolecules as a function of wavelength using surface plasmon resonance”, Journal of Applied Physics, vol. 116, no. 2, 2014.
  34. Densmore, D. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge et al., "Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response." Optics Letters, vol. 33, no. 6, pp. 596-598, 2008.
  35. Makarona, E. Kapetanakis, D. M. Velessiotis, A. Douvas, P. Argitis, P. Normand, T. Gotszalk, M. Woszczyna, and N. Glezos "Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates", Microelectronic Engineering, vol. 85, no. 5-6, pp. 1399-1402, 2008